Diverse prostaglandin receptors activate distinct signal transduction pathways in rat myometrium

1992 ◽  
Vol 263 (1) ◽  
pp. C257-C265 ◽  
Author(s):  
O. Goureau ◽  
Z. Tanfin ◽  
S. Marc ◽  
S. Harbon

Attempts were made to identify prostaglandin (PG) receptors in rat myometrium, according to the differential rank order of potencies displayed by the natural PGs and their analogues, both at the level of second messenger generation and contraction. In estrogen-treated rat myometrium, PGs [iloprost = PGI2 greater than PGE2 much greater than 16,16-dimethyl (DM)-PGE2; sulprostone = misoprostol = 0] induced adenosine 3',5'-cyclic monophosphate generation, indicating the contribution of a PGI2 receptor. The generation of inositol phosphates was stimulated by PGs (PGF2 alpha greater than PGD2 much greater than PGE2 = DM-PGE2 much greater than iloprost greater than sulprostone = misoprostol = 0), reflecting a PGF2 alpha-receptor-mediated process, which was insensitive to pertussis toxin (PTX). Contractions caused by PGF2 alpha were closely correlated to PGF2 alpha-receptor activation associated with the phospholipase C pathway. By contrast, contractions evoked by PGE2, equally mimicked by sulprostone and misoprostol, were abolished by PTX and were independent of phospholipase C activation. In the pregnant myometrium (day 21), the latter PGE-receptor-mediated mechanism also contributed to contractions caused by PGE2 (less than microM concn). Phospholipase C activation was coupled not only to PGF2 alpha but also to PGE receptors and could be correlated with contractions induced by PGF2 alpha and PGE2 greater than microM concn). All PGs tested were coupled to inhibitory G protein-mediated adenylate cyclase inhibition, displaying an equipotency that did not allow characterization of the inhibitory PG receptors.

1988 ◽  
Vol 255 (2) ◽  
pp. C149-C154 ◽  
Author(s):  
H. Sugiya ◽  
J. W. Putney

Previous studies have shown that exposure of parotid acinar cells to substance P at 37 degrees C results in activation of phospholipase C, formation of [3H]inositol 1,4,5-trisphosphate (IP3), and persistent desensitization of the substance P response. In cells treated with antimycin in medium containing glucose, ATP was decreased to approximately 20% of control values, IP3 formation was completely inhibited, but desensitization was unaffected. When cells were treated with antimycin in the absence of glucose, cellular ATP was decreased to approximately 5% of control values, and both IP3 formation and desensitization were blocked. A series of substance P-related peptides increased the formation of [3H]IP3 and induced desensitization of the substance P response with a similar rank order of potencies. The substance P antagonist, [D-Pro, D-Trp]-substance P, inhibited substance P-induced IP3 formation and desensitization but did not induce desensitization. These results suggest that the desensitization of substance P-induced IP3 formation requires agonist activation of a P-type substance P receptor, and that one or more cellular ATP-dependent processes are required for this reaction. However, activation of phospholipase C and the generation of inositol phosphates does not seem to be a prerequisite for desensitization.


2019 ◽  
Vol 19 (10) ◽  
pp. 782-795
Author(s):  
John W. Wright ◽  
Kevin J. Church ◽  
Joseph W. Harding

Pancreatic cancer (PC) ranks twelfth in frequency of diagnosis but is the fourth leading cause of cancer related deaths with a 5 year survival rate of less than 7 percent. This poor prognosis occurs because the early stages of PC are often asymptomatic. Over-expression of several growth factors, most notably vascular endothelial growth factor (VEGF), has been implicated in PC resulting in dysfunctional signal transduction pathways and the facilitation of tumor growth, invasion and metastasis. Hepatocyte growth factor (HGF) acts via the Met receptor and has also received research attention with ongoing efforts to develop treatments to block the Met receptor and its signal transduction pathways. Macrophage-stimulating protein (MSP), and its receptor Ron, is also recognized as important in the etiology of PC but is less well studied. Although the angiotensin II (AngII)/AT1 receptor system is best known for mediating blood pressure and body water/electrolyte balance, it also facilitates tumor vascularization and growth by stimulating the expression of VEGF. A metabolite of AngII, angiotensin IV (AngIV) has sequence homology with the “hinge regions” of HGF and MSP, key structures in the growth factor dimerization processes necessary for Met and Ron receptor activation. We have developed AngIV-based analogs designed to block dimerization of HGF and MSP and thus receptor activation. Norleual has shown promise as tested utilizing PC cell cultures. Results indicate that cell migration, invasion, and pro-survival functions were suppressed by this analog and tumor growth was significantly inhibited in an orthotopic PC mouse model.


1995 ◽  
Vol 269 (2) ◽  
pp. C435-C442 ◽  
Author(s):  
Y. Wen ◽  
M. C. Cabot ◽  
E. Clauser ◽  
S. L. Bursten ◽  
J. L. Nadler

A stable Chinese hamster ovary fibroblast line expressing the rat vascular type 1a angiotensin II (ANG II) receptor was used to study the lipid-derived signal transduction pathways elicited by type 1a ANG II receptor activation. ANG II caused a biphasic and dose-dependent increase in diacylglycerol (DAG) accumulation with an initial peak at 15 s (181 +/- 11% of control, P < 0.02) and a second sustained peak at 5-10 min (214 +/- 10% of control, P < 0.02). The late DAG peak was derived from phosphatidylcholine (PC), and the formation was blocked by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. ANG II also increased phosphatidic acid (PA) production nearly fourfold by 7.5 min. In the presence of ethanol, ANG II markedly increased phosphatidylethanol (PEt) formation, indicating activation of phospholipase D (PLD). ANG II was shown to increase the mass of three separate PA species, one of which apparently originated from DAG kinase action on PC-phospholipase C (PLC)-produced DAG, providing evidence for PC-PLC activity. ANG II also formed a third PA species, which originated neither from PLD nor from DAG kinase. These results demonstrate that multiple lipid signals propagated via collateral stimulation of PLC and PLD are generated by specific activation of the vascular type 1a ANG II receptor.


1997 ◽  
Vol 56 ◽  
pp. 36
Author(s):  
M. Bracke ◽  
P.J. Coffer ◽  
R.C. Schweizer ◽  
J.-W. Lammers ◽  
L. Koenderman

Sign in / Sign up

Export Citation Format

Share Document