lipid signal
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 13)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amir Seginer ◽  
Edna Furman-Haran ◽  
Ilan Goldberg ◽  
Rita Schmidt

AbstractUltra-high-field functional magnetic resonance imaging (fMRI) offers a way to new insights while increasing the spatial and temporal resolution. However, a crucial concern in 7T human MRI is the increase in power deposition, supervised through the specific absorption rate (SAR). The SAR limitation can restrict the brain coverage or the minimal repetition time of fMRI experiments. In the majority of today’s studies fMRI relies on the well-known gradient-echo echo-planar imaging (GRE-EPI) sequence, which offers ultrafast acquisition. Commonly, the GRE-EPI sequence comprises two pulses: fat suppression and excitation. This work provides the means for a significant reduction in the SAR by circumventing the fat-suppression pulse. Without this fat-suppression, however, lipid signal can result in artifacts due to the chemical shift between the lipid and water signals. Our approach exploits a reconstruction similar to the simultaneous-multi-slice method to separate the lipid and water images, thus avoiding undesired lipid artifacts in brain images. The lipid-water separation is based on the known spatial shift of the lipid signal, which can be detected by the multi-channel coils sensitivity profiles. Our study shows robust human imaging, offering greater flexibility to reduce the SAR, shorten the repetition time or increase the volume coverage with substantial benefit for brain functional studies.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1754
Author(s):  
Junyi Yao ◽  
Yiyang Guan ◽  
Yunhwan Park ◽  
Yoon E Choi ◽  
Hyun Soo Kim ◽  
...  

Polydimethylsiloxane (PDMS) is a polymer widely used for fabrication and prototyping of microfluidic chips. The porous matrix structure of PDMS allows small hydrophobic molecules including some fluorescent dyes to be readily absorbed to PDMS and results in high fluorescent background signals, thereby significantly decreasing the optical detection sensitivity. This makes it challenging to accurately detect the fluorescent signals from samples using PDMS devices. Here, we have utilized polytetrafluoroethylene (PTFE) to inhibit absorption of hydrophobic small molecules on PDMS. Nile red was used to analyze the effectiveness of the inhibition and the absorbed fluorescence intensities for 3% and 6% PTFE coating (7.7 ± 1.0 and 6.6 ± 0.2) was twofold lower compared to 1% and 2% PTFE coating results (17.2 ± 0.5 and 15.4 ± 0.5). When compared to the control (55.3 ± 1.6), it was sevenfold lower in background fluorescent intensity. Furthermore, we validated the optimized PTFE coating condition using a PDMS bioreactor capable of locally stimulating cells during culture to quantitatively analyze the lipid production using Chlamydomonas reinhardtii CC-125. Three percent PTFE coating was selected as the optimal concentration as there was no significant difference between 3% and 6% PTFE coating. Intracellular lipid contents of the cells were successfully stained with Nile Red inside the bioreactor and 3% PTFE coating successfully minimized the background fluorescence noise, allowing strong optical lipid signal to be detected within the PDMS bioreactor comparable to that of off-chip, less than 1% difference.


2020 ◽  
Author(s):  
Amir Seginer ◽  
Edna Furman-Haran ◽  
Ilan Goldberg ◽  
Rita Schmidt

AbstractUltra-high-field functional magnetic resonance imaging (fMRI) offers the way to new insights while increasing the spatial and temporal resolution. However, a crucial concern in 7T human MRI is the increase in power deposition, supervised through the specific absorption rate (SAR). The SAR limitation can restrict the brain coverage or the minimal repetition time of fMRI experiments. fMRI is based on the well-known gradient-echo echo-planar imaging (GRE-EPI) sequence, which offers ultrafast acquisition. Commonly, the GRE-EPI sequence comprises two pulses: fat suppression and excitation. This work provides the means for a significant reduction in the SAR by circumventing the fat-suppression pulse. Without this fat-suppression, however, lipid signal can result in artifacts due to the chemical shift between the lipid and water signals. Our approach exploits a reconstruction similar to the simultaneous-multi-slice (SMS) method to separate the lipid and water images, thus avoiding undesired lipid artifacts in brain images. The lipid-water separation is based on the known spatial shift of the lipid signal, which can be detected by the multi-channel coils sensitivity profiles. Our study shows robust human imaging, offering greater flexibility to reduce the SAR, shorten the repetition time or increase the volume coverage with substantial benefit for brain functional studies.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Shinjini Chowdhury ◽  
Vivek Choudhary ◽  
Mrunal Choudhary ◽  
Xunsheng Chen ◽  
Wendy B Bollag

Aldosterone is considered to be a link between hypertension and obesity; obese individuals have high serum levels of both sphingosine-1-phosphate (S1P) and very low-density lipoprotein (VLDL). S1P has been reported to be a novel stimulator of aldosterone secretion and phospholipase D (PLD) activity. VLDL has also been shown to stimulate aldosterone production in multiple zona glomerulosa cell models via PLD. PLD is an enzyme that hydrolyzes phosphatidylcholine to phosphatidic acid (PA) which can then be converted to diacylglycerol (DAG) by lipin-1. However, it is unclear which of the two lipid signals, PA or DAG, underlies PLD’s mediation of aldosterone production. We hypothesized that the S1P1 receptor (S1PR1) agonist, SEW2871, (and VLDL) induces steroidogenesis and therefore aldosterone production via lipin-1-mediated metabolism of PA to DAG, with our hypothesis focusing on DAG as the key lipid signal produced by PLD (indirectly). In HAC15 cells, lipin-1 was overexpressed using an adenovirus or inhibited using propranolol followed by treatment with or without SEW2871 (or VLDL) for 24 h. Steroidogenic gene expression and aldosterone levels were monitored by qRT-PCR and radioimmunoassay, respectively. We demonstrated that lipin-1 overexpression (OE) enhanced the SEW2871-stimulated 109-fold increase in CYP11B2 expression by 26% while lipin-1 inhibition decreased the SEW2871-stimulated 56-fold increase in CYP11B2 expression by 74%. While lipin-1 OE had no further effect, propranolol reduced SEW2871-stimulated increases in NR4A1 (2-fold) and NR4A2 (9-fold) mRNA levels by 22% and 52% respectively. The SEW2871-stimulated increase in aldosterone production was inhibited by propranolol (53%), although it was not enhanced by lipin-1 OE. Similar results were obtained with VLDL. Our results are, therefore, suggestive of DAG being the key lipid signal since regulating lipin-1 affects S1PR1 agonist- and VLDL-stimulated steroidogenic gene expression and ultimately, aldosterone production. Our study warrants further investigation into these steroidogenic signaling pathways which can lead to the identification of novel therapeutic targets such as lipin-1, or its downstream pathways, to potentially treat obesity-associated hypertension.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2275
Author(s):  
Stefano Rossetti ◽  
Nicoletta Sacchi

All-trans retinoic acid (RA), which is the dietary bioactive derivative obtained from animal (retinol) and plant sources (beta-carotene), is a physiological lipid signal of both embryonic and postembryonic development. During pregnancy, either RA deficiency or an excessive RA intake is teratogenic. Too low or too high RA affects not only prenatal, but also postnatal, developmental processes such as myelopoiesis and mammary gland morphogenesis. In this review, we mostly focus on emerging RA-regulated epigenetic mechanisms involving RA receptor alpha (RARA) and Annexin A8 (ANXA8), which is a member of the Annexin family, as well as ANXA8 regulatory microRNAs (miRNAs). The first cancer showing ANXA8 upregulation was reported in acute promyelocytic leukemia (APL), which induces the differentiation arrest of promyelocytes due to defective RA signaling caused by RARA fusion genes as the PML-RARA gene. Over the years, ANXA8 has also been found to be upregulated in other cancers, even in the absence of RARA fusion genes. Mechanistic studies on human mammary cells and mammary glands of mice showed that ANXA8 upregulation is caused by genetic mutations affecting RARA functions. Although not all of the underlying mechanisms of ANXA8 upregulation have been elucidated, the interdependence of RA-RARA and ANXA8 seems to play a relevant role in some normal and tumorigenic settings.


Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1012
Author(s):  
Naoki Yamato ◽  
Mana Matsuya ◽  
Hirohiko Niioka ◽  
Jun Miyake ◽  
Mamoru Hashimoto

Semantic segmentation with deep learning to extract nerves from label-free endoscopic images obtained using coherent anti-Stokes Raman scattering (CARS) for nerve-sparing surgery is described. We developed a CARS rigid endoscope in order to identify the exact location of peripheral nerves in surgery. Myelinated nerves are visualized with a CARS lipid signal in a label-free manner. Because the lipid distribution includes other tissues as well as nerves, nerve segmentation is required to achieve nerve-sparing surgery. We propose using U-Net with a VGG16 encoder as a deep learning model and pre-training with fluorescence images, which visualize the lipid distribution similar to CARS images, before fine-tuning with a small dataset of CARS endoscopy images. For nerve segmentation, we used 24 CARS and 1,818 fluorescence nerve images of three rabbit prostates. We achieved label-free nerve segmentation with a mean accuracy of 0.962 and an F 1 value of 0.860. Pre-training on fluorescence images significantly improved the performance of nerve segmentation in terms of the mean accuracy and F 1 value ( p < 0.05 ). Nerve segmentation of label-free endoscopic images will allow for safer endoscopic surgery, while reducing dysfunction and improving prognosis after surgery.


2020 ◽  
Author(s):  
Nicholas J. Katris ◽  
Yoshiki Yamaryo-Botte ◽  
Jan Janouškovec ◽  
Serena Shunmugam ◽  
Christophe-Sebastien Arnold ◽  
...  

ABSTRACTHost cell invasion and subsequent egress by Toxoplasma parasites is regulated by a network of cGMP, cAMP, and calcium signalling proteins. Such eukaryotic signalling networks typically involve lipid second messengers including phosphatidylinositol phosphates (PIPs), diacylglycerol (DAG) and phosphatidic acid (PA). However, the lipid signalling network in Toxoplasma is poorly defined. Here we present lipidomic analysis of a mutant of central flippase/guanylate cyclase TgGC in Toxoplasma, which we show has disrupted turnover of signalling lipids impacting phospholipid metabolism and membrane stability. The turnover of signalling lipids is extremely rapid in extracellular parasites and we track changes in PA and DAG to within 5 seconds, which are variably defective upon disruption of TgGC and other signalling proteins. We then identify the position of each protein in the signal chain relative to the central cGMP signalling protein TgGC and map the lipid signal network coordinating conoid extrusion and microneme secretion for egress and invasion.


2020 ◽  
Author(s):  
Josiah McMillen ◽  
jarod Fincher ◽  
Dustin R. Klein ◽  
Jeffrey Spraggins ◽  
Richard M. Caprioli

<p>Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for highly multiplexed, untargeted detection of many hundreds of analytes from tissue. Recently, laser post-ionization (MALDI-2) has been developed for increased ion yield and sensitivity for lipid IMS. However, the dependence of MALDI-2 performance on the various lipid classes is largely unknown. To understand the effect of the applied matrix on MALDI-2 analysis of lipids, samples including an equimolar lipid standard mixture, various tissue homogenates, and intact rat kidney tissue sections were analyzed using the following matrices: α-cyano-4-hydroxycinnamic acid (CHCA), 2’,5’-dihydroxyacetophenone (DHA), 2’,5’-dihydroxybenzoic acid (DHB), and norharmane (NOR). Lipid signal enhancement of protonated species using MALDI-2 technology varied based on the matrix used. Although signal improvements were observed for all matrices, the most dramatic effects using MALDI-2 were observed using NOR and DHB. For lipid standards analyzed by MALDI-2, NOR provided the broadest coverage, enabling the detection of all 13 protonated standards, including non-polar lipids, whereas DHB gave less coverage but gave the highest signal increase for those lipids recorded. With respect to tissue homogenates and rat kidney tissue, mass spectra were compared and showed that the number and intensity of neutral lipids tentatively identified with MALDI-2 using NOR increased significantly (e.g. 5-fold intensity increase for triacylglycerol). In the cases of DHB with MALDI-2, the number of protonated lipids identified from tissue homogenates doubled with 152 on average compared to 76 with MALDI alone. High spatial resolution imaging (~20 µm) of rat kidney tissue showed similar results using DHB with 125 lipids tentatively identified from MALDI-2 spectra versus just 72 using standard MALDI. From the four matrices tested, NOR provided the greatest increase in sensitivity for neutral lipids (triacylglycerol, diacylglycerol, monoacylglycerol, cholesterol ester) and DHB provided the highest overall number of lipids detected using MALDI-2 technology. </p>


2020 ◽  
Author(s):  
Josiah McMillen ◽  
jarod Fincher ◽  
Dustin R. Klein ◽  
Jeffrey Spraggins ◽  
Richard M. Caprioli

<p>Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for highly multiplexed, untargeted detection of many hundreds of analytes from tissue. Recently, laser post-ionization (MALDI-2) has been developed for increased ion yield and sensitivity for lipid IMS. However, the dependence of MALDI-2 performance on the various lipid classes is largely unknown. To understand the effect of the applied matrix on MALDI-2 analysis of lipids, samples including an equimolar lipid standard mixture, various tissue homogenates, and intact rat kidney tissue sections were analyzed using the following matrices: α-cyano-4-hydroxycinnamic acid (CHCA), 2’,5’-dihydroxyacetophenone (DHA), 2’,5’-dihydroxybenzoic acid (DHB), and norharmane (NOR). Lipid signal enhancement of protonated species using MALDI-2 technology varied based on the matrix used. Although signal improvements were observed for all matrices, the most dramatic effects using MALDI-2 were observed using NOR and DHB. For lipid standards analyzed by MALDI-2, NOR provided the broadest coverage, enabling the detection of all 13 protonated standards, including non-polar lipids, whereas DHB gave less coverage but gave the highest signal increase for those lipids recorded. With respect to tissue homogenates and rat kidney tissue, mass spectra were compared and showed that the number and intensity of neutral lipids tentatively identified with MALDI-2 using NOR increased significantly (e.g. 5-fold intensity increase for triacylglycerol). In the cases of DHB with MALDI-2, the number of protonated lipids identified from tissue homogenates doubled with 152 on average compared to 76 with MALDI alone. High spatial resolution imaging (~20 µm) of rat kidney tissue showed similar results using DHB with 125 lipids tentatively identified from MALDI-2 spectra versus just 72 using standard MALDI. From the four matrices tested, NOR provided the greatest increase in sensitivity for neutral lipids (triacylglycerol, diacylglycerol, monoacylglycerol, cholesterol ester) and DHB provided the highest overall number of lipids detected using MALDI-2 technology. </p>


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 822 ◽  
Author(s):  
Natalia Battista ◽  
Monica Bari ◽  
Tiziana Bisogno

The lipid signal is becoming increasingly crowded as increasingly fatty acid amide derivatives are being identified and considered relevant therapeutic targets. The identification of N-arachidonoyl-ethanolamine as endogenous ligand of cannabinoid type-1 and type-2 receptors as well as the development of different–omics technologies have the merit to have led to the discovery of a huge number of naturally occurring N-acyl-amines. Among those mediators, N-acyl amino acids, chemically related to the endocannabinoids and belonging to the complex lipid signaling system now known as endocannabinoidome, have been rapidly growing for their therapeutic potential. Here, we review the current knowledge of the mechanisms for the biosynthesis and inactivation of the N-acyl amino acids, as well as the various molecular targets for some of the N-acyl amino acids described so far.


Sign in / Sign up

Export Citation Format

Share Document