Altered expression of myosin mRNA and protein in rat soleus and tibialis anterior following reinnervation

1996 ◽  
Vol 271 (6) ◽  
pp. C2016-C2026 ◽  
Author(s):  
K. A. Huey ◽  
S. C. Bodine

Myosin heavy chain (MHC) expression was studied in rat soleus and tibialis anterior (TA) at the mRNA and protein levels following reinnervation 8 and 32 wk after sciatic nerve injury. A sciatic nerve crush or transection injury was produced in the midthigh region of adult female Sprague-Dawley rats. A ribonuclease protection assay was developed to measure four of the adult MHCs (I, IIa, IIx, IIb) in a single sample. MHC mRNA and protein were measured and compared in the same muscles. Eight and thirty-two weeks after a crush injury, the MHC mRNA profiles were similar to control with the exception of soleus MHC IIa and TA MHC IIb, which were significantly less than control at both time points. In contrast, reinnervation of the soleus following a sciatic nerve transection injury resulted in an MHC isoform shift characterized by increases in the relative amounts of fast myosin (IIa and IIx) and a decrease in slow myosin. As expected, significant changes first occurred at the mRNA level followed by changes in protein expression. Thirty-two weeks after transection injury and repair, the primary MHC mRNA isoform in the soleus was MHC IIx. Moreover, at 32 wk, MHC IIb mRNA was detected in 50% of the reinnervated soleus following a transection injury. Reinnervation of the TA following sciatic nerve transection led to replacement of the MHC IIb isoform with MHC IIx.

Author(s):  
Marie C Walters ◽  
David R Ladle

Reflex abnormalities mediated by proprioceptive sensory neurons after peripheral nerve injury (PNI) can limit functional improvement, leaving patients with disability that affects their quality of life. We examined post-injury calcium transients in a subpopulation of DRG neurons consisting primarily of proprioceptors to determine whether alterations in calcium homeostasis are present in proprioceptors, as has been documented in other DRG neurons after PNI. Using transgenic mice, we restricted expression of the calcium indicator GCaMP6s to DRG neurons containing parvalbumin (PV). Mice of both sexes were randomly assigned to sham, sciatic nerve crush, or sciatic nerve transection and resuture conditions. Calcium transients were recorded from ex-vivo preparations of animals at one of three post-surgery time points: 1-3 days, 7-11 days, and after 60 days of recovery. Results demonstrated that the post-PNI calcium transients of PV DRG neurons are significantly different than sham. Abnormalities were not present during the acute response to injury (1-3 days), but transients were significantly different than sham at the recovery stage where axon regeneration is thought to be underway (7-11 days). During late-stage recovery (60 days post-injury), disturbances in the decay time course of calcium transients in transection animals persisted, whereas parameters of transients from crush animals returned to normal. These findings identify a deficit in calcium homeostasis in proprioceptive neurons, which may contribute to the failure to fully recover proprioceptive reflexes after PNI. Significant differences in the calcium transients of crush versus transection animals after reinnervation illustrate calcium homeostasis alterations are distinctive to injury type.


2015 ◽  
Vol 52 (5) ◽  
pp. 869-875 ◽  
Author(s):  
Kenia Lemos Muniz ◽  
Fernando José Dias ◽  
Joaquim Coutinho-Netto ◽  
Ricardo Alexandre Junqueira Calzzani ◽  
Mamie Mizusaki Iyomasa ◽  
...  

2013 ◽  
Vol 109 (11) ◽  
pp. 2645-2657 ◽  
Author(s):  
Tiffany Boeltz ◽  
Meredith Ireland ◽  
Kristin Mathis ◽  
Jennifer Nicolini ◽  
Karen Poplavski ◽  
...  

Exercise, in the form of moderate daily treadmill training following nerve transection and repair leads to enhanced axon regeneration, but its effect on functional recovery is less well known. Female rats were exercised by walking continuously, at a slow speed (10 m/min), for 1 h/day on a level treadmill, beginning 3 days after unilateral transection and surgical repair of the sciatic nerve, and conducted 5 days/wk for 2 wk. In Trained rats, both direct muscle responses to tibial nerve stimulation and H reflexes in soleus reappeared earlier and increased in amplitude more rapidly over time than in Untrained rats. The efficacy of the restored H reflex was greater in Trained rats than in Untrained controls. The reinnervated tibialis anterior and soleus were coactivated during treadmill locomotion in Untrained rats. In Trained animals, the pattern of activation of soleus, but not tibialis anterior, was not significantly different from that found in Intact rats. The overall length of the hindlimb during level and up- and downslope locomotion was conserved after nerve injury in both groups. This conservation was achieved by changes in limb orientation. Limb length was conserved effectively in all rats during downslope walking but only in Trained rats during level and upslope walking. Moderate daily exercise applied immediately after sciatic nerve transection is sufficient to promote axon regeneration, to restore muscle reflexes, and to improve the ability of rats to cope with different biomechanical demands of slope walking.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Shih-Tien Hsu ◽  
Chun-Hsu Yao ◽  
Yuan-Man Hsu ◽  
Jia-Horng Lin ◽  
Yung-Hsiang Chen ◽  
...  

Abstract Recent studies describe taxol as a candidate treatment for promoting central nerve regeneration. However, taxol has serious side effects including peripheral neurotoxicity, and little information is known about the effect of taxol on peripheral nerve regeneration. We investigated the effects of taxol on regeneration in a rat sciatic nerve transection model. Rats were divided into four groups (n = 10): normal saline (i.p.) as the control, Cremophor EL vehicle, and 2 or 6 mg/kg of taxol in the Cremophor EL solution (four times in day-2, 4, 6, and 8), respectively. We evaluated neuronal electrophysiology, animal behaviour, neuronal connectivity, macrophage infiltration, location and expression levels of calcitonin gene-related peptide (CGRP), and expression levels of both nerve growth factors and immunoregulatory factors. In the high-dose taxol group (6 mg/kg), neuronal electrophysiological function was significantly impaired. Licking latencies were significantly changed while motor coordination was unaffected. Neuronal connectivity, macrophage density, and expression levels of CGRP was dramatically reduced. Expression levels of nerve growth factors and immunoregulatory factors was also reduced, while it was increased in the low-dose taxol group (2 mg/kg). These results indicate that taxol can modulate local inflammatory conditions, impair nerve regeneration, and impede recovery of a severe peripheral nerve injury.


2007 ◽  
Vol 205 (3) ◽  
pp. S92
Author(s):  
Terence M. Myckatyn ◽  
Christina Kenney ◽  
Alice Tong ◽  
Jessica Duan ◽  
Daniel Hunter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document