Regulation of vascular angiotensin II receptors by EGF

1997 ◽  
Vol 273 (4) ◽  
pp. C1241-C1249 ◽  
Author(s):  
Michael E. Ullian ◽  
John R. Raymond ◽  
Mark C. Willingham ◽  
Richard V. Paul

After vascular endothelial injury, angiotensin II (ANG II) plays a role in the resulting hypertrophic response, and expression of epidermal growth factor (EGF) is enhanced. Therefore, we tested the possibility that EGF regulates vascular ANG II action and receptor expression. Incubation of cultured aortic vascular smooth muscle cells (VSMC) with EGF (or basic fibroblast growth factor but not platelet-derived growth factor isoforms) resulted in concentration-dependent (1–50 ng/ml EGF), time-dependent (>8 h), and reversible decreases in ANG II surface receptor density. For example, a 50% reduction was observed after exposure to 50 ng/ml EGF for 24 h. Incubation of cultured VSMC with 50 ng/ml EGF for 24 h resulted in a 77% reduction in ANG II-stimulated inositol phosphate formation. EGF not only prevented but also reversed ANG II receptor upregulation by 100 nM corticosterone. The specific tyrosine kinase inhibitor tyrphostin A48 (50 μM) reduced EGF-stimulated thymidine incorporation and EGF-stimulated phosphorylation of mitogen-activated protein kinase but did not prevent EGF from reducing ANG II receptor density. Neither pertussis toxin (100 ng/ml) nor downregulation of protein kinase C by phorbol myristate acetate (100 nM for 24 h) prevented EGF from reducing ANG II receptor density. In summary, EGF is a potent negative regulator of vascular ANG II surface receptor density and ANG II action by mechanisms that do not appear to include tyrosine phorphorylation, pertussis toxin-sensitive G proteins, or phorbol ester-sensitive protein kinase C. The possibility that EGF shifts the cell culture phenotype to one that exhibits reduced surface ANG II density cannot be eliminated by the present studies.

1994 ◽  
Vol 297 (3) ◽  
pp. 523-528 ◽  
Author(s):  
I Kojima ◽  
N Kawamura ◽  
H Shibata

The present study was conducted to monitor precisely the activity of protein kinase C (PKC) in adrenal glomerulosa cells stimulated by angiotensin II (ANG II). PKC activity in cells was monitored by measuring phosphorylation of a synthetic KRTLRR peptide, a specific substrate for PKC, immediately after the permeabilization of the cells with digitonin [Heasley and Johnson J. Biol. Chem. (1989) 264, 8646-8652]. Addition of 1 nM ANG II induced a gradual increase in KRTLRR peptide phosphorylation, which reached a peak at 30 min, and phosphorylation was sustained thereafter. When the action of ANG II was terminated by adding [Sar1,Ala8]ANG II, a competitive antagonist, both Ca2+ entry and KRTLRR phosphorylation ceased rapidly, whereas diacylglyercol (DAG) content was not changed significantly within 10 min. Similarly, when blockade of Ca2+ entry was achieved by decreasing extracellular Ca2+ to 1 microM or by adding 1 microM nitrendipine, KRTLRR peptide phosphorylation was decreased within 5 min. In addition, restoration of Ca2+ entry was accompanied by an immediate increase in KRTLRR peptide phosphorylation. Under the same condition, DAG content did not change significantly. We then examined the role of the PKC pathway in ANG II-induced aldosterone production. Ro 31-8220 inhibited ANG II-induced KRTLRR phosphorylation without affecting the activity of calmodulin-dependent protein kinase II. In the presence of Ro 31-8220, ANG II-mediated aldosterone production was decreased to approx. 50%. Likewise, intracellular administration of PKC19-36, a sequence corresponding to residues 19-36 of the regulatory domain of PKC known to inhibit PKC activity, attenuated ANG II-mediated activation of PKC and aldosterone output. These results indicate a critical role of Ca2+ entry in the regulation of PKC activity by ANG II.


1990 ◽  
Vol 258 (4) ◽  
pp. C610-C617 ◽  
Author(s):  
C. J. Kalberg ◽  
C. Sumners

The radioligand binding of 125I-angiotensin II (ANG II) and calcium phospholipid-dependent protein kinase C (PKC) activity were measured to study the specificity and mechanisms of PKC involvement in the regulation of ANG II-specific binding site expression in neuronal cultures prepared from the brains of 1-day-old rats. Previously, PKC-activating phorbol esters were shown to increase the specific binding of 125I-ANG II in neuronal cultures. However, phorbol esters have many biological effects, which may nonspecifically act to increase 125I-ANG II-specific binding. In the present study, mezerein and teleocidin A, two activators of PKC that are chemically unrelated to phorbol esters, increased the specific binding of 125I-ANG II in a dose- and time-dependent manner with 50% effective dose (ED50) values of 32 and 79 nM, respectively. The PKC antagonist H-7 dose dependently inhibited phorbol 12-myristate 13-acetate (TPA)-stimulated increases in 125I-ANG II binding, whereas downregulation of PKC activity by chronic phorbol ester incubations of 24 and 48 h prevented TPA-stimulated increases in 125I-ANG II-specific binding. TPA (0.8 microM), mezerein (0.76 microM), and teleocidin A (0.5 microM) all caused a rapid translocation of PKC activity from the cytosol to the particulate fraction by 15 min. Temporally, the maximal stimulation of PKC translocation by mezerein, teleocidin A, and TPA preceded their ability to stimulate maximal 125I-ANG II-specific binding. Taken together, these results suggest that PKC is directly involved in the stimulation of ANG II-specific binding site expression and that translocation of PKC is a prerequisite for the increased expression of ANG II binding sites.


2005 ◽  
Vol 280 (16) ◽  
pp. 15719-15726 ◽  
Author(s):  
Zhiheng He ◽  
Kerrie J. Way ◽  
Emi Arikawa ◽  
Eva Chou ◽  
Darren M. Opland ◽  
...  

Protein kinase C (PKC) and angiotensin II (AngII) can regulate cardiac function in pathological conditions such as in diabetes or ischemic heart disease. We have reported that expression of connective tissue growth factor (CTGF) is increased in the myocardium of diabetic mice. Now we showed that the increase in CTGF expression in cardiac tissues of streptozotocin-induced diabetic rats was reversed by captopril and islet cell transplantation. Infusion of AngII in rats increased CTGF mRNA expression by 15-fold, which was completely inhibited by co-infusion with AT1 receptor antagonist, candesartan. Similarly, incubation of cultured cardiomyocytes with AngII increased CTGF mRNA expression by 2-fold, which was blocked by candesartan and a general PKC inhibitor, GF109203X. The role of PKC isoform-dependent action was further studied using adenoviral vector-mediated gene transfer of dominant negative (dn) PKC or wild type PKC isoforms. Expression of dnPKCα, -ϵ, and -ζ isoforms suppressed AngII-induced CTGF expression in cardiomyocytes. In contrast, expression of dominant negative PKCδ significantly increased AngII-induced CTGF expression, whereas expression of wild type PKCδ inhibited this induction. This inhibitory effect was further confirmed in the myocardium of transgenic mice with cardiomyocyte-specific overexpression of PKCδ (δTg mice). Thus, AngII can regulate CTGF expression in cardiomyocytes through a PKC activation-mediated pathway in an isoform-selective manner both in physiological and diabetic states and may contribute to the development of cardiac fibrosis in diabetic cardiomyopathy.


Endocrinology ◽  
1998 ◽  
Vol 139 (4) ◽  
pp. 1801-1809 ◽  
Author(s):  
Ying Tian ◽  
Roger D. Smith ◽  
Tamas Balla ◽  
Kevin J. Catt

Abstract Angiotensin II (Ang II) stimulates growth and mitogenesis in bovine adrenal glomerulosa cells, but little is known about the signaling pathways that mediate these responses. An analysis of the growth-promoting pathways in cultured bovine adrenal glomerulosa cells revealed that Ang II, acting via the AT1 receptor, caused rapid but transient activation of mitogen-activated protein kinase (MAPK), with an ED50 of 10–50 pm. Although neither Ca2+ influx nor Ca2+ release from intracellular stores was sufficient to activate MAPK, Ca2+ appeared to play a permissive role in this response. A major component of Ang II-induced MAPK activation was insensitive to pertussis toxin (PTX), although a minor PTX-sensitive component could not be excluded. Ang II also induced the rapid activation of ras and raf-1 kinase with time-courses that correlated with that of MAPK. Activation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate was sufficient to activate both MAPK and raf-1 kinase. However, whereas PKC depletion had no effect on Ang II-induced raf-1 kinase activation, it attenuated Ang II-induced MAPK activation. Ang II also stimulated a mobility shift of raf-1, reflecting hyperphosphorylation of the kinase. However, unlike its activation, raf-1 hyperphosphorylation was dependent on PKC and its time-course correlated not with activation, but rather with deactivation of the kinase. Taken together, these findings indicate that Ang II stimulates multiple pathways to MAPK activation via PKC and ras/raf-1 kinase in bovine adrenal glomerulosa cells.


2001 ◽  
Vol 85 (02) ◽  
pp. 296-302 ◽  
Author(s):  
Marielle Kroon ◽  
Pieter Koolwijk ◽  
Mario Vermeer ◽  
Bea van der Vecht ◽  
Victor van Hinsbergh

SummaryAmong other proteolytic enzymes, the urokinase-type plasminogen activator (u-PA)/plasmin cascade contributes to cell migration and the formation of capillary-like structures in a fibrinous exudate. The u-PA receptor (u-PAR) focuses proteolytical activity on the cell surface of the endothelial cell and hereby accelerates the pericellular matrix degradation. Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF)-2 enhance u-PA receptor expression in human endothelial cells. In this paper we show that the protein kinase C (PKC) inhibitors Ro31-8220 and GF109203X inhibit VEGF165-induced u-PAR antigen expression in human endothelial cells, whereas PKC inhibition had no effect on FGF-2-induced u-PAR antigen enhancement. In addition, inhibition of PKC activity had no effect on VEGF165-or FGF-2-induced proliferation in human endothelial cells. We conclude that VEGF165 induces u-PAR via a PKC-dependent pathway, whereas proliferation is induced via a different pathway probably involving tyrosine phosphorylation of proteins downstream of the VEGF receptors.


1993 ◽  
Vol 265 (4) ◽  
pp. C1100-C1108 ◽  
Author(s):  
R. L. Barnett ◽  
L. Ruffini ◽  
L. Ramsammy ◽  
R. Pasmantier ◽  
M. M. Friedlaender ◽  
...  

Angiotensin II (ANG II) in mesangial cells (MC) promotes phosphatidylinositol (PI) hydrolysis resulting in diacylglycerol (DAG)-mediated increases in protein kinase C (PKC) activity. The paucity of MC inositol lipid prompted us to consider whether phosphatidylcholine (PC) could sustain DAG formation. ANG II released choline and increased phosphatidylethanol (PEt) via PC-phospholipase D (PC-PLD). ANG II also stimulated phosphorylcholine consequent to PC-phospholipase C (PC-PLC) activation. ANG II-mediated PC hydrolysis augmented DAG for 30 min. PC breakdown was influenced by extracellular Ca2+, because Ni2+ partially inhibited ANG II-induced PEt and obliterated agonist-mediated DAG formation. The consequence of Ca2+ modulation of PC metabolism was investigated by measuring PKC activity. Ni2+ had no effect on early (PI-associated) activation by ANG II at 90 s but obviated translocation from cytosol to the membrane at 10 min. The pathway responsible for PC-associated DAG was studied in PKC downregulated cells. Whereas downregulation prevented PLD-mediated PEt elevation, ANG II-stimulated DAG formation in myristate-labeled cells was unaltered, indicating PC-PLC activation. In summary, ANG II stimulates PC-PLD and PC-PLC in MC. PC-PLD is tightly regulated by PKC, whereas PC-PLC is stringently controlled by extracellular Ca2+. ANG II mediated PC breakdown principally via PC-PLC provides a mechanism for maintaining elevated DAG levels and PKC activation.


2001 ◽  
Vol 281 (3) ◽  
pp. C1059-C1063 ◽  
Author(s):  
Kerrie A. Buhagiar ◽  
Peter S. Hansen ◽  
Nerida L. Bewick ◽  
Helge H. Rasmussen

A reduction in angiotensin II (ANG II) in vivo by treatment of rabbits with the angiotensin-converting enzyme inhibitor, captopril, increases Na+-K+ pump current ( I p) of cardiac myocytes. This increase is abolished by exposure of myocytes to ANG II in vitro. Because ANG II induces translocation of the ɛ-isoform of protein kinase C (PKCɛ), we examined whether this isozyme regulates the pump. We treated rabbits with captopril, isolated myocytes, and measured I p of myocytes voltage clamped with wide-tipped patch pipettes. I p of myocytes from captopril-treated rabbits was larger than I p of myocytes from controls. ANG II superfusion of myocytes from captopril-treated rabbits decreased I p to levels similar to controls. Inclusion of PKCɛ-specific blocking peptide in pipette solutions used to perfuse the intracellular compartment abolished the effect of ANG II. Inclusion of ψɛRACK, a PKCɛ-specific activating peptide, in pipette solutions had an effect on I p that was similar to that of ANG II. There was no additive effect of ANG II and ψɛRACK. We conclude that PKCɛ regulates the sarcolemmal Na+-K+ pump.


1995 ◽  
Vol 269 (1) ◽  
pp. C134-C140 ◽  
Author(s):  
Z. Karim ◽  
N. Defontaine ◽  
M. Paillard ◽  
J. Poggioli

The present study examined the effect of phorbol esters, Ca2+, and angiotensin II (ANG II) on protein kinase C (PKC) isoforms in the rat proximal tubule. The immunoblot analysis of PKC isoforms of particulate and cytosolic fractions of proximal tubules revealed immunoreactive proteins when antibodies against PKC-alpha, -delta, -epsilon, and -zeta, but not -beta and -gamma were used. Phorbol dibutyrate (PDBU) induced the translocation of PKC-alpha, -delta, and -epsilon, whereas an inactive phorbol ester had no effect. PDBU and ionomycin increased particulate PKC specific activity from 0.67 +/- 0.09 to 1.56 +/- 0.18 and 0.96 +/- 0.04 pmol.microgram protein-1.2 min-1, respectively. ANG II (10(-7) M) induced a time-dependent increase in particulate PKC-alpha immunoreactivity observed after 2 min and maintained for 12 min. Particulate PKC-epsilon immunoreactivity increased after 4 min. Meanwhile, PKC-delta and -zeta were not modified by ANG II. Accordingly, ANG II elicited a rise in the specific activity of the particulate PKC, which increased to 0.89 +/- 0.09 pmol.micrograms protein-1.2 min-1 after 2 min. This was inhibited by a preincubation in the presence of 10(-5) M losartan, specific inhibitor of angiotensin subtype 1 receptors. These data indicate that PKC-alpha and -epsilon are potential candidates to regulate the activity of Na+/H+ and Na(+)-HCO3- transporters because they are translocated with a time course fitting with that of the reported effect of ANG II on those transporters.


Sign in / Sign up

Export Citation Format

Share Document