Ca2+ influx inhibits voltage-dependent and augments Ca2+-dependent K+ currents in arterial myocytes

1999 ◽  
Vol 277 (1) ◽  
pp. C51-C63 ◽  
Author(s):  
Robert H. Cox ◽  
Steven Petrou

These experiments were performed to determine the effects of reducing Ca2+ influx (Cain) on K+ currents ( I K) in myocytes from rat small mesenteric arteries by 1) adding external Cd2+ or 2) lowering external Ca2+ to 0.2 mM. When measured from a holding potential (HP) of −20 mV ( I K20), decreasing Cain decreased I K at voltages where it was active (>0 mV). When measured from a HP of −60 mV ( I K60), decreasing Cain increased I K at voltages between −30 and +20 mV but decreased I K at voltages above +40 mV. Difference currents (Δ I K) were determined by digital subtraction of currents recorded under control conditions from those obtained when Cain was decreased. At test voltages up to 0 mV, Δ I K60 exhibited kinetics similar to control I K60, with rapid activation to a peak followed by slow inactivation. At 0 mV, peak Δ I K60 averaged 75 ± 13 pA ( n = 8) with Cd2+ and 120 ± 20 pA ( n = 9) with low Ca2+ concentration. At test voltages from 0 to +60 mV, Δ I K60 always had an early positive peak phase, but its apparent “inactivation” increased with voltage and its steady value became negative above +20 mV. At +60 mV, the initial peak Δ I K60 averaged 115 ± 18 pA with Cd2+ and 187 ± 34 pA with low Ca2+. With 10 mM pipette BAPTA, Cd2+ produced a small inhibition of I K20 but still increased I K60between −30 and +10 mV. In Ca2+-free external solution, Cd2+ only decreased both I K20 and I K60. In the presence of iberiotoxin (100 nM) to inhibit Ca2+-activated K+ channels (KCa), Cd2+ increased I K60 at all voltages positive to −30 mV while BAY K 8644 (1 μM) decreased I K60. These results suggest that Cain, through L-type Ca2+ channels and perhaps other pathways, increases KCa(i.e., I K20) and decreases voltage-dependent K+currents in this tissue. This effect could contribute to membrane depolarization and force maintenance.

Author(s):  
Ji Yeon Lee ◽  
Haifeng Zheng ◽  
Kenton M. Sanders ◽  
Sang Don Koh

We characterized the two types of voltage-dependent inward currents in murine antral SMC. The HVA and LVA inward currents were identified when cells were bathed in Ca2+-containing physiological salt solution. We examined whether the LVA inward current was due to: 1) T-type Ca2+ channels, 2) Ca2+-activated Cl- channels, 3) non-selective cation channels (NSCC) or 4) voltage-dependent K+ channels with internal Cs+-rich solution. Replacement of external Ca2+ (2 mM) with equimolar Ba2+ increased the amplitude of the HVA current but blocked the LVA current. Nicardipine blocked the HVA current, and in the presence of nicardipine, T-type Ca2+ blockers failed to block LVA. The Cl- channel antagonist had little effect on LVA. Cation-free external solution completely abolished both HVA and LVA. Addition of Ca2+ in cation-free solution restored only HVA currents. Addition of K+ (5 mM) to cation-free solution induced LVA current that reversed at -20 mV. These data suggest that LVA is not due to T-type Ca2+ channels, Ca2+-activated Cl- channels or NSCC. Antral SMC express A-type K+ currents (KA) and delayed rectifying K+ currents (KV) with dialysis of high K+ (140 mM) solution. When cells were exposed to high K+ external solution with dialysis of Cs+-rich solution in the presence of nicardipine, LVA was evoked and reversed at positive potentials. These HK-induced inward currents were blocked by K+ channel blockers, 4-aminopyridine and TEA. In conclusion, LVA inward currents can be generated by K+ influx via KA and KV channels in murine antral SMC when cells were dialyzed with Cs+-rich solution.


1991 ◽  
Vol 11 (3) ◽  
pp. 371-379 ◽  
Author(s):  
Chiharu Tanoi ◽  
Yoshio Suzuki ◽  
Masato Shibuya ◽  
Kenichiro Sugita ◽  
Kaoru Masuzawa ◽  
...  

Vasoconstrictor effects of endothelin-1 (ET) were investigated in endothelium-denuded strips of cerebral (basilar and posterior cerebral) and mesenteric arteries of the dog. ET produced a concentration-dependent contraction in these arteries. Contractile responses to lower concentrations (below 3 × 10−10 M) of ET were significantly greater in the cerebral arteries than in the mesenteric artery. Inhibition by nifedipine of the contractile responses to ET was greater in the basilar artery than in the mesenteric artery. After the inhibition by 10−7 M nifedipine, the remaining responses to ET were similar in the two arteries. Cerebral arteries, but not the mesenteric artery, relaxed significantly from the resting level when placed in a Ca2+ -free solution containing 0.1 m M EGTA (0-Ca solution). Readdition of Ca2+ to the cerebral arteries placed in the 0-Ca solution caused a biphasic contraction that was sensitive to nifedipine. When 10−9 M ET was introduced before the Ca2+-induced contraction, this peptide produced only a very small contraction, but enhanced the Ca2+-induced contraction. The extent of the enhancement induced by ET was much greater in the cerebral arteries than in the mesenteric artery. These results indicate that the enhanced responses to ET in the cerebral arteries were dependent to a large extent on Ca2+ influx through voltage-dependent Ca2+ channels (VDCs). It is likely that the VDCs in these arteries are more activated in the resting state than those in the mesenteric artery.


2001 ◽  
Vol 537 (2) ◽  
pp. 391-406 ◽  
Author(s):  
Vladimir Riazanski ◽  
Albert Becker ◽  
Jian Chen ◽  
Dmitry Sochivko ◽  
Ailing Lie ◽  
...  

Endocrinology ◽  
2010 ◽  
Vol 151 (3) ◽  
pp. 1079-1088 ◽  
Author(s):  
Wiebke Hirdes ◽  
Crenguta Dinu ◽  
Christiane K. Bauer ◽  
Ulrich Boehm ◽  
Jürgen R. Schwarz

Secretion of LH from gonadotropes is initiated by a GnRH-induced increase in intracellular Ca2+ concentration ([Ca2+]i). This increase in [Ca2+]i is the result of Ca2+ release from intracellular stores and Ca2+ influx through voltage-dependent Ca2+ channels. Here we describe an ether-à-go-go-related gene (erg) K+ current in primary mouse gonadotropes and its possible function in the control of Ca2+ influx. To detect gonadotropes, we used a knock-in mouse strain, in which GnRH receptor-expressing cells are fluorescently labeled. Erg K+ currents were recorded in 80–90% of gonadotropes. Blockage of erg currents by E-4031 depolarized the resting potential by 5–8 mV and led to an increase in [Ca2+]i, which was abolished by nifedipine. GnRH inhibited erg currents by a reduction of the maximal erg current and in some cells additionally by a shift of the activation curve to more positive potentials. In conclusion, the erg current contributes to the maintenance of the resting potential in gonadotropes, thereby securing a low [Ca2+]i by restricting Ca2+ influx. In addition, the erg channels are modulated by GnRH by an as-yet unknown signal cascade.


2002 ◽  
Vol 87 (6) ◽  
pp. 2990-2995 ◽  
Author(s):  
Wolfgang Müller ◽  
Katrin Bittner

Oxidative stress is enhanced by [Ca2+]i-dependent stimulation of phospholipases and mitochondria and has been implicated in immune defense, ischemia, and excitotoxicity. Using whole cell recording from hippocampal neurons, we show that arachidonic acid (AA) and hydrogen peroxide (H2O2) both reduce the transient K+ current I A by −54 and −68%, respectively, and shift steady-state inactivation by −10 and −15 mV, respectively. While AA was effective at an extracellular concentration of 1 μM and an intracellular concentration of 1 pM, extracellular H2O2 was equally effective only at a concentration >800 μM (0.0027%). In contrast to AA, H2O2 decreased the slope of activation and increased the slope of inactivation of I A and reduced the sustained delayed rectifier current I K(V) by 22% and shifted its activation by −9 mV. Intracellular application of the antioxidant glutathione (GSH, 2–5 mM) blocked all effects of AA and the reduction of I A by H2O2. In contrast, intracellular GSH enhanced reduction of I K(V) by H2O2. Decrease of the slope of activation and increase of the slope of inactivation of I A by hydrogen peroxide was blocked and reversed to a decrease, respectively, by intracellular application of GSH. Intracellular GSH did not prevent H2O2 to shift inactivation and activation of I A and activation of I K(V) to more negative potentials. We conclude, that AA and H2O2modulate voltage-activated K currents differentially by oxidation of GSH accessible intracellular and GSH inaccessible extracellular K+-channel domains, thereby presumably affecting neuronal information processing and oxidative damage.


Glia ◽  
2015 ◽  
Vol 63 (9) ◽  
pp. 1646-1659 ◽  
Author(s):  
Lorena Rela ◽  
Ana Paula Piantanida ◽  
Angelique Bordey ◽  
Charles A. Greer

1998 ◽  
Vol 273 (36) ◽  
pp. 23080-23085 ◽  
Author(s):  
Naoto Hoshi ◽  
Hiroto Takahashi ◽  
Mohammad Shahidullah ◽  
Shigeru Yokoyama ◽  
Haruhiro Higashida

1990 ◽  
Vol 64 (5) ◽  
pp. 1474-1483 ◽  
Author(s):  
D. A. Baxter ◽  
J. H. Byrne

1. Forskolin is often used to activate adenylate cyclase in studies relating adenosine 3',5'-cyclic monophosphate (cAMP) to the modulation of membrane current. There is growing concern, however, that some actions of forskolin are independent of cAMP. With the use of two-electrode voltage-clamp techniques, we compared the effects of analogues of cAMP to the effects of forskolin on K+ currents in somata of sensory neurons that were isolated from pleural ganglia of Aplysia californica. 2. Analogues of cAMP did not reduce the peak amplitude of either the transient K+ current (IA) or the voltage-dependent K+ current (IK.V). Analogues of cAMP did reduce the previously described cAMP-sensitive S K+ current (IK.S). In contrast, forskolin reduced the peak amplitude of both IA and IK.V. Furthermore, both IA and IK.V were reduced by 1,9-dideoxy-forskolin, a derivative of forskolin that does not activate adenylate cyclase. These results indicate that the effects of forskolin and 1,9-dideoxy-forskolin on IA and IK.V were not mediated via cAMP. 3. Bath application of a modified form of forskolin (7-deacetyl-6-[N-acetylglycyl]-forskolin), which has enhanced water solubility and activates adenylate cyclase, reduced IK.S, but did not alter either IA or IK.V. Thus it appears that certain derivatives of forskolin can be used to activate adenylate cyclase and avoid some of the nonspecific actions on membrane current that are associated with forskolin.


Sign in / Sign up

Export Citation Format

Share Document