Induced TRPC1 expression increases protein phosphatase 2A sensitizing intestinal epithelial cells to apoptosis through inhibition of NF-κB activation

2008 ◽  
Vol 294 (5) ◽  
pp. C1277-C1287 ◽  
Author(s):  
Bernard S. Marasa ◽  
Lan Xiao ◽  
Jaladanki N. Rao ◽  
Tongtong Zou ◽  
Lan Liu ◽  
...  

Transient receptor potential canonical-1 (TRPC1) functions as a store-operated Ca2+ channel in intestinal epithelial cells (IECs), and induced TRPC1 expression sensitizes IECs to apoptosis by inhibiting NF-κB activation. However, the exact mechanism by which increased TRPC1 results in NF-κB inactivation remains elusive. Protein phosphatase 2A (PP2A) is a widely conserved protein serine/threonine phosphatase that is implicated in the regulation of a wide array of cellular functions including apoptosis. The present study tests the hypothesis that induced TRPC1 expression inhibits NF-κB activation by increasing PP2A activity through Ca2+ influx in IECs. The expression of TRPC1 induced by stable transfection with the wild-type TRPC1 gene increased PP2A activity as indicated by increases in levels of PP2A proteins and their phosphatase activity. Increased levels of PP2A activity in stable TRPC1-transfected IEC-6 cells (IEC-TRPC1) were associated with decreased nuclear levels of NF-κB proteins and a reduction in NF-κB-dependent transcriptional activity, although there were no changes in total NF-κB protein levels. Inhibition of PP2A activity by treatment with okadaic acid or PP2A silencing with small interfering RNA not only enhanced NF-κB transactivation but also prevented the increased susceptibility of IEC-TRPC1 cells to apoptosis induced by treatment with tumor necrosis factor-α (TNF-α)/cycloheximide (CHX). Decreasing Ca2+ influx by exposure to the Ca2+-free medium reduced PP2A mRNA levels, destabilized PP2A proteins, and induced NF-κB activation, thus blocking the increased sensitivity of IEC-TRPC1 cells to TNF-α/CHX-induced apoptosis. These results indicate that induced TRPC1 expression increases PP2A activity through Ca2+ influx and that increased PP2A sensitizes IECs to apoptosis as a result of NF-κB inactivation.

1998 ◽  
Vol 274 (3) ◽  
pp. G472-G479 ◽  
Author(s):  
Maarten A. C. Meijssen ◽  
Steven L. Brandwein ◽  
Hans-Christian Reinecker ◽  
Atul K. Bhan ◽  
Daniel K. Podolsky

Intestinal epithelial cells may be actively involved in the immunoregulatory pathways leading to intestinal inflammation. The aim of this study was to assess expression by intestinal epithelial cells of cytokines with potential involvement in the development of intestinal inflammation in interleukin (IL)-2-deficient [(−/−)] mice. Wild-type mice, mice heterozygous for the disrupted IL-2 gene, and IL-2(−/−) mice were studied at 6, 16, and 24 wk of age. The mRNA levels of transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), IL-1β, IL-6, IL-15, KC, JE, and CD14 in colonic and small intestinal epithelial cells were assessed by Northern blot analysis. CD14 was also measured by Western blotting and reverse transcriptase polymerase chain reaction (RT-PCR). TGF-β1 mRNA was constitutively expressed in both colonic and small intestinal epithelial cells with increased expression in the colonic epithelium of colitic mice. CD14 was detected only in colonic epithelial cells, and mRNA levels increased severalfold in IL-2(−/−) mice with colitis. Northern analysis demonstrated increased levels of TGF-β1 and CD14 mRNA in colonic epithelial cells of IL-2(−/−) mice before the development of signs of colitis. CD14 mRNA and protein expression in the epithelial cells of colitic mice were confirmed by RT-PCR and Western blot analysis of isolated cells. In addition, IL-2(−/−) mice also expressed increased levels of IL-15 mRNA in small intestinal and colonic epithelial cells compared with heterozygous control mice. TNF-α, IL-1β, IL-6, KC, and JE mRNAs were only detectable in colonic epithelial cells of mice after the onset of colitis. Enhanced expression of TGF-β1, IL-15, and CD14 by colonic epithelial cells may play a role in the subsequent development of colitis in IL-2(−/−) mice.


2020 ◽  
Vol 26 (7) ◽  
pp. 627-634 ◽  
Author(s):  
Zhang Zhu ◽  
Li Xueying ◽  
Li Chunlin ◽  
Xiong Wen ◽  
Zeng Rongrong ◽  
...  

Berberine is an alkaloid extracted from medicinal plants such as Coptis chinensis and Phellodendron chinense. It possesses anti-inflammatory, anti-tumour and anti-oxidation properties, and regulates Glc and lipid metabolism. This study explored the mechanisms of the protective effects of berberine on barrier function and inflammatory damage in porcine intestinal epithelial cells (IPEC-J2) induced by LPS. We first evaluated the effects of berberine and LPS on cell viability. IPEC-J2 cells were treated with 5 μg/ml LPS for 1 h to establish an inflammatory model, and 75, 150 and 250 μg/ml berberine were used in further experiments. The expression of IL-1β, IL-6 and TNF-α was measured by RT-PCR. The key proteins of the NF-κB/MAPK signalling pathway (IκBα, p-IκBα, p65, p-p65, c-Jun N-terminal kinase (JNK), p-JNK, p38, p-p38, ERK1/2 and p-ERK1/2) were detected by Western blot. Upon exposure to LPS, IL-1β, IL-6 and TNF-α mRNA levels and p-IκBα p-p65 protein levels were significantly enhanced. Pre-treatment with berberine reduced the expression of inflammatory factors and was positively correlated with its concentration, and dose dependently inhibited the expression of IκBα, p-IκBα, p-p65, p-p38 and JNK. These results demonstrated that pre-treating intestinal epithelial cells with berberine was useful in preventing and treating diarrhoea induced by Escherichia coli in weaned pigs.


1998 ◽  
Vol 274 (1) ◽  
pp. C289-C294 ◽  
Author(s):  
Chandira K. Kumar ◽  
Toai T. Nguyen ◽  
Francis B. Gonzales ◽  
Hamid M. Said

We recently identified a cDNA clone from mouse small intestine, which appears to be involved in folate transport when expressed in Xenopus oocytes. The open reading frame of this clone is identical to that of the reduced folate carrier (RFC) (K. H. Dixon, B. C. Lanpher, J. Chiu, K. Kelley, and K. H. Cowan. J. Biol. Chem. 269: 17–20, 1994). The characteristics of this cDNA clone [previously referred to as intestinal folate carrier 1 (IFC-1)] expressed in Xenopus oocytes, however, were found to be different from the characteristics of folate transport in native small intestinal epithelial cells. To further study these differences, we determined the characteristics of RFC when expressed in an intestinal epithelial cell line, IEC-6, and compared the findings to its characteristics when expressed in Xenopus oocytes. RFC was stably transfected into IEC-6 cells by electroporation; its cRNA was microinjected into Xenopus oocytes. Northern blot analysis of poly(A)+RNA from IEC-6 cells stably transfected with RFC cDNA (IEC-6/RFC) showed a twofold increase in RFC mRNA levels over controls. Similarly, uptake of folic acid and 5-methyltetrahydrofolate (5-MTHF) by IEC-6/RFC was found to be fourfold higher than uptake in control sublines. This increase in folic acid and 5-MTHF uptake was inhibited by treating IEC-6/RFC cells with cholesterol-modified antisense DNA oligonucleotides. The increase in uptake was found to be mainly mediated through an increase in the maximal velocity ( V max) of the uptake process [the apparent Michaelis-Menten constant ( K m) also changed (range was 0.31 to 1.56 μM), but no specific trend was seen]. In both IEC-6/RFC and control sublines, the uptake of both folic acid and 5-MTHF displayed 1) pH dependency, with a higher uptake at acidic pH 5.5 compared with pH 7.5, and 2) inhibition to the same extent by both reduced and oxidized folate derivatives. These characteristics are very similar to those seen in native intestinal epithelial cells. In contrast, RFC expressed in Xenopus oocytes showed 1) higher uptake at neutral and alkaline pH 7.5 compared with acidic pH 5.5 and 2) higher sensitivity to reduced compared with oxidized folate derivatives. Results of these studies demonstrate that the characteristics of RFC vary depending on the cell system in which it is expressed. Furthermore, the results may suggest the involvement of cell- or tissue-specific posttranslational modification(s) and/or the existence of an auxiliary protein that may account for the differences in the characteristics of the intestinal RFC when expressed in Xenopus oocytes compared with when expressed in intestinal epithelial cells.


1995 ◽  
Vol 308 (2) ◽  
pp. 665-671 ◽  
Author(s):  
T P Mayall ◽  
I Bjarnason ◽  
U Y Khoo ◽  
T J Peters ◽  
A J S Macpherson

Most mitochondrial genes are transcribed as a single large transcript from the heavy strand of mitochondrial DNA, and are subsequently processed into the proximal mitochondrial (mt) 12 S and 16 S rRNAs, and the more distal tRNAs and mRNAs. We have shown that in intestinal epithelial biopsies the steady-state levels of mt 12 S and 16 S rRNA are an order of magnitude greater than those of mt mRNAs. Fractionation of rat small intestinal epithelial cells on the basis of their maturity has shown that the greatest ratios of 12 S mt rRNA/cytochrome b mt mRNA or 12 S mt rRNA/cytochrome oxidase I mt mRNA are found in the surface mature enterocytes, with a progressive decrease towards the crypt immature enteroblasts. Cytochrome b and cytochrome oxidase I mt mRNA levels are relatively uniform along the crypt-villus axis, but fractionation experiments showed increased levels in the crypt base. The levels of human mitochondrial transcription factor A are also greater in immature crypt enteroblasts compared with mature villus enterocytes. These results show that the relative levels of mt rRNA and mRNA are distinctly regulated in intestinal epithelial cells according to the crypt-villus position and differentiation status of the cells, and that there are higher mt mRNA and mt TFA levels in the crypts, consistent with increased transcriptional activity during mitochondrial biogenesis in the immature enteroblasts.


2011 ◽  
Vol 140 (5) ◽  
pp. S-84
Author(s):  
Masaya Saito ◽  
Tomoo Nakagawa ◽  
Yoshiko Noguchi ◽  
Toru Sato ◽  
Tatsuro Katsuno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document