scholarly journals NUPR1 preserves insulin secretion of pancreatic β-cells during inflammatory stress by multiple low-dose streptozotocin and high-fat diet

2020 ◽  
Vol 319 (2) ◽  
pp. E338-E344 ◽  
Author(s):  
Günter Päth ◽  
Amir E. Mehana ◽  
Ingo H. Pilz ◽  
Marcus Alt ◽  
Johannes Baumann ◽  
...  

Obesity is associated with dyslipidemia and subclinical inflammation that promotes metabolic disturbances including insulin resistance and pancreatic β-cell dysfunction. The nuclear protein, transcriptional regulator 1 (NUPR1) responds to cellular stresses and features tissue protective properties. To characterize the role of NUPR1 in endocrine pancreatic islets during inflammatory stress, we generated transgenic mice with β-cell-specific Nupr1 overexpression (βNUPR1). Under normal conditions, βNUPR1 mice did not differ from wild type (WT) littermates and display normal glucose homeostasis and β-cell mass. For induction of inflammatory conditions, mice were treated with multiple low-dose streptozotocin (mld-STZ) and/or fed a high-fat diet (HFD). All treatments significantly worsened glycaemia in WT mice, while βNUPR1 mice substantially preserved insulin secretion and glucose tolerance. HFD increased β-cell mass in all animals, with βNUPR1 mice tending to show higher values. The improved outcome of βNUPR1 mice was accompanied by decreased NF-κB activation and lymphocyte infiltration in response to mld-STZ. In vitro, isolated βNUPR1 islets preserved insulin secretion and content with insignificantly low apoptosis during culture stress and IL-1β exposure. These findings suggest that NUPR1 plays a vital role in the protection of β-cells from apoptosis, related degradation of insulin storages and subsequent secretion during inflammatory and obesity-related tissue stress.

Endocrinology ◽  
2015 ◽  
Vol 156 (10) ◽  
pp. 3570-3580 ◽  
Author(s):  
Hiroshi Nomoto ◽  
Takuma Kondo ◽  
Hideaki Miyoshi ◽  
Akinobu Nakamura ◽  
Yoko Hida ◽  
...  

The large-Maf transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) has been found to be crucial for insulin transcription and synthesis and for pancreatic β-cell function and maturation. However, insights about the effects of small Maf factors on β-cells are limited. Our goal was to elucidate the function of small-Maf factors on β-cells using an animal model of endogenous small-Maf dysfunction. Transgenic (Tg) mice with β-cell-specific expression of dominant-negative MafK (DN-MafK) experiments, which can suppress the function of all endogenous small-Mafs, were fed a high-fat diet, and their in vivo phenotypes were evaluated. Phenotypic analysis, glucose tolerance tests, morphologic examination of β-cells, and islet experiments were performed. DN-MafK-expressed MIN6 cells were also used for in vitro analysis. The results showed that DN-MafK expression inhibited endogenous small-Maf binding to insulin promoter while increasing MafA binding. DN-MafK Tg mice under high-fat diet conditions showed improved glucose metabolism compared with control mice via incremental insulin secretion, without causing changes in insulin sensitivity or MafA expression. Moreover, up-regulation of insulin and glucokinase gene expression was observed both in vivo and in vitro under DN-MafK expression. We concluded that endogenous small-Maf factors negatively regulates β-cell function by competing for MafA binding, and thus, the inhibition of small-Maf activity can improve β-cell function.


Endocrinology ◽  
2019 ◽  
Vol 160 (12) ◽  
pp. 2825-2836 ◽  
Author(s):  
Monica Hoang ◽  
Sabina Paglialunga ◽  
Eric Bombardier ◽  
A Russell Tupling ◽  
Jamie W Joseph

Abstract The transcription factor aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia-inducible factor (HIF)-1β (ARNT/HIF1β) plays a key role in maintaining β-cell function and has been shown to be one of the most downregulated transcription factors in islets from patients with type 2 diabetes. We have shown a role for ARNT/HIF1β in glucose sensing and insulin secretion in vitro and no defects in in vivo glucose homeostasis. To gain a better understanding of the role of ARNT/HIF1β in the development of diabetes, we placed control (+/+/Cre) and β-cell–specific ARNT/HIF1β knockout (fl/fl/Cre) mice on a high-fat diet (HFD). Unlike the control (+/+/Cre) mice, HFD-fed fl/fl/Cre mice had no impairment in in vivo glucose tolerance. The lack of impairment in HFD-fed fl/fl/Cre mice was partly due to an improved islet glucose-stimulated NADPH/NADP+ ratio and glucose-stimulated insulin secretion. The effects of the HFD-rescued insulin secretion in fl/fl/Cre islets could be reproduced by treating low-fat diet (LFD)–fed fl/fl/Cre islets with the lipid signaling molecule 1-monoacylglcyerol. This suggests that the defects seen in LFD-fed fl/fl/Cre islet insulin secretion involve lipid signaling molecules. Overall, mice lacking ARNT/HIF1β in β-cells have altered lipid signaling in vivo and are resistant to an HFD’s ability to induce diabetes.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Tao Yang ◽  
Qi Fu ◽  
Hemin Jiang

Abstract CHL1 Increases Insulin Secretion & Negatively Regulates The Poliferation Of Pancreatic β Cell Objective: CHL1 belongs to neural recognition molecules of the immunoglobulin superfamily, is mainly expressed in the nervous system. CHL1 is involved in neuronal migration, axonal growth, and dendritic projection. RNA sequencing of single human islet cells confirmed that CHL1 had an expression difference in β cells of type 2 diabetes and healthy controls. However, whether CHL1 gene regulates islet function remained to be explored. Methods: PCR and Western Blot were applied to investigate the tissue distribution of CHL1 in wild-type C57BL/6J mice. The islet expression of CHL1 gene was observed in pancreatic islets of NOD mice and high-fat-diet C57BL/6J mice of different ages. MIN6 cells with siRNA to silence CHL1 or with lentivirus to overexpress CHL1 were constructed. Effects of the gene on proliferation, apoptosis, cell cycle and insulin secretion were determined by using CCK8, EdU, TUNEL, AV/PI, GSIS, electron microscopy and flow cytometry. Results: CHL1 was localized on the cell membrane and expressed in the nervous system, islet of pancreas and gastrointestinal tract. CHL1 was hypoexpressed in the pancreatic islets of obese mice, hyperexpressed in the pancreatic islets of NOD mice and in vitro after treated with cytokines. After silencing CHL1 in MIN6 cells, insulin secretion decreased in 20 mM glucose with down-regulation of INS1, SLC2A2 gene, and transmission electron microscope showed the number of insulin secretary granules <50nm from the cell membrane was significantly reduced. Silencing of CHL1 in MIN6 cells induced cell proliferation, reduced apoptosis rate, prolonged the S phase of cell cycle and shortened the G1 phase with downregulated expression of p21, p53 and up-regulated expression of cyclin D1, opposite results were found in CHL1 over-expressing MIN6 cells. Proliferation induced by silencing of CHL1 was inhibited by ERK inhibitor (PD98059), which indicates that ERK pathway is essential for signaling by these molecules in pancreatic β cell. Conclusion: The expression of CHL1 gene was significantly decreased in the pancreatic islets of obese mice induced by high-fat diet. The low expression of CHL1 gene promotes the proliferation of MIN6 cells through the ERK pathway and affect cell cycle through the p53 pathway. This may be one of the mechanisms that pancreatic β cells compensatory hyperplasia in the stage of obesity-induced pre-diabetes.


Endocrinology ◽  
2015 ◽  
Vol 156 (4) ◽  
pp. 1242-1250 ◽  
Author(s):  
Chisayo Kozuka ◽  
Sumito Sunagawa ◽  
Rei Ueda ◽  
Moritake Higa ◽  
Hideaki Tanaka ◽  
...  

Abstract Endoplasmic reticulum (ER) stress is profoundly involved in dysfunction of β-cells under high-fat diet and hyperglycemia. Our recent study in mice showed that γ-oryzanol, a unique component of brown rice, acts as a chemical chaperone in the hypothalamus and improves feeding behavior and diet-induced dysmetabolism. However, the entire mechanism whereby γ-oryzanol improves glucose metabolism throughout the body still remains unclear. In this context, we tested whether γ-oryzanol reduces ER stress and improves function and survival of pancreatic β-cells using murine β-cell line MIN6. In MIN6 cells with augmented ER stress by tunicamycin, γ-oryzanol decreased exaggerated expression of ER stress-related genes and phosphorylation of eukaryotic initiation factor-2α, resulting in restoration of glucose-stimulated insulin secretion and prevention of apoptosis. In islets from high-fat diet-fed diabetic mice, oral administration of γ-oryzanol improved glucose-stimulated insulin secretion on following reduction of exaggerated ER stress and apoptosis. Furthermore, we examined the impact of γ-oryzanol on low-dose streptozotocin-induced diabetic mice, where exaggerated ER stress and resultant apoptosis in β-cells were observed. Also in this model, γ-oryzanol attenuated mRNA level of genes involved in ER stress and apoptotic signaling in islets, leading to amelioration of glucose dysmetabolism. Taken together, our findings demonstrate that γ-oryzanol directly ameliorates ER stress-induced β-cell dysfunction and subsequent apoptosis, highlighting usefulness of γ-oryzanol for the treatment of diabetes mellitus.


2021 ◽  
Vol 22 (1) ◽  
pp. 421
Author(s):  
Hui Huang ◽  
Bradi R. Lorenz ◽  
Paula Horn Zelmanovitz ◽  
Catherine B. Chan

Prediabetes is a high-risk condition for type 2 diabetes (T2D). Pancreatic β-cells adapt to impaired glucose regulation in prediabetes by increasing insulin secretion and β-cell mass expansion. In people with prediabetes, metformin has been shown to prevent prediabetes conversion to diabetes. However, emerging evidence indicates that metformin has negative effects on β-cell function and survival. Our previous study established the Nile rat (NR) as a model for prediabetes, recapitulating characteristics of human β-cell compensation in function and mass expansion. In this study, we investigated the action of metformin on β-cells in vivo and in vitro. A 7-week metformin treatment improved glucose tolerance by reducing hepatic glucose output and enhancing insulin secretion. Although high-dose metformin inhibited β-cell glucose-stimulated insulin secretion in vitro, stimulation of β-cell insulin secretion was preserved in metformin-treated NRs via an indirect mechanism. Moreover, β-cells in NRs receiving metformin exhibited increased endoplasmic reticulum (ER) chaperones and alleviated apoptotic unfold protein response (UPR) without changes in the expression of cell identity genes. Additionally, metformin did not suppress β-cell mass compensation or proliferation. Taken together, despite the conflicting role indicated by in vitro studies, administration of metformin does not exert a negative effect on β-cell function or cell mass and, instead, early metformin treatment may help protect β-cells from exhaustion and decompensation.


Endocrinology ◽  
2016 ◽  
Vol 157 (3) ◽  
pp. 1055-1070 ◽  
Author(s):  
Ting Zhang ◽  
Dae Hyun Kim ◽  
Xiangwei Xiao ◽  
Sojin Lee ◽  
Zhenwei Gong ◽  
...  

Abstract β-Cell compensation is an essential mechanism by which β-cells increase insulin secretion for overcoming insulin resistance to maintain euglycemia in obesity. Failure of β-cells to compensate for insulin resistance contributes to insulin insufficiency and overt diabetes. To understand the mechanism of β-cell compensation, we characterized the role of forkhead box O1 (FoxO1) in β-cell compensation in mice under physiological and pathological conditions. FoxO1 is a key transcription factor that serves as a nutrient sensor for integrating insulin signaling to cell metabolism, growth, and proliferation. We showed that FoxO1 improved β-cell compensation via 3 distinct mechanisms by increasing β-cell mass, enhancing β-cell glucose sensing, and augmenting β-cell antioxidative function. These effects accounted for increased glucose-stimulated insulin secretion and enhanced glucose tolerance in β-cell-specific FoxO1-transgenic mice. When fed a high-fat diet, β-cell-specific FoxO1-transgenic mice were protected from developing fat-induced glucose disorder. This effect was attributable to increased β-cell mass and function. Furthermore, we showed that FoxO1 activity was up-regulated in islets, correlating with the induction of physiological β-cell compensation in high-fat-induced obese C57BL/6J mice. These data characterize FoxO1 as a pivotal factor for orchestrating physiological adaptation of β-cell mass and function to overnutrition and obesity.


2021 ◽  
Vol 22 (24) ◽  
pp. 13330
Author(s):  
Stephanie Bridgeman ◽  
Gaewyn Ellison ◽  
Philip Newsholme ◽  
Cyril Mamotte

Histone deacetylase (HDAC) inhibitors such as butyrate have been reported to reduce diabetes risk and protect insulin-secreting pancreatic β cells in animal models. However, studies on insulin-secreting cells in vitro have found that butyrate treatment resulted in impaired or inappropriate insulin secretion. Our study explores the effects of butyrate on insulin secretion by BRIN BD-11 rat pancreatic β cells and examined effects on the expression of genes implicated in β cell function. Robust HDAC inhibition with 5 mM butyrate or trichostatin A for 24 h in β cells decreased basal insulin secretion and content, as well as insulin secretion in response to acute stimulation. Treatment with butyrate also increased expression of the disallowed gene hexokinase I, possibly explaining the impairment to insulin secretion, and of TXNIP, which may increase oxidative stress and β cell apoptosis. In contrast to robust HDAC inhibition (>70% after 24 h), low-dose and acute high-dose treatment with butyrate enhanced nutrient-stimulated insulin secretion. In conclusion, although protective effects of HDAC inhibition have been observed in vivo, potent HDAC inhibition impairs β cell function in vitro. The chronic low dose and acute high dose butyrate treatments may be more reflective of in vivo effects.


2017 ◽  
Vol 313 (3) ◽  
pp. E367-E380 ◽  
Author(s):  
Kazuki Tajima ◽  
Jun Shirakawa ◽  
Tomoko Okuyama ◽  
Mayu Kyohara ◽  
Shunsuke Yamazaki ◽  
...  

Metformin has been widely used for the treatment of type 2 diabetes. However, the effect of metformin on pancreatic β-cells remains controversial. In this study, we investigated the impacts of treatment with metformin on pancreatic β-cells in a mouse model fed a high-fat diet (HFD), which triggers adaptive β-cell replication. An 8-wk treatment with metformin improved insulin resistance and suppressed the compensatory β-cell hyperplasia induced by HFD-feeding. In contrast, the increment in β-cell mass arising from 60 wk of HFD feeding was similar in mice treated with and those treated without metformin. Interestingly, metformin suppressed β-cell proliferation induced by 1 wk of HFD feeding without any changes in insulin resistance. Metformin directly suppressed glucose-induced β-cell proliferation in islets and INS-1 cells in accordance with a reduction in mammalian target of rapamycin phosphorylation. Taken together, metformin suppressed HFD-induced β-cell proliferation independent of the improvement of insulin resistance, partly via direct actions.


2019 ◽  
Author(s):  
Vipul Shrivastava ◽  
Megan Lee ◽  
Marle Pretorius ◽  
Guneet Makkar ◽  
Carol Huang

AbstractPancreatic islets adapt to insulin resistance of pregnancy by up regulating β-cell proliferation and increase insulin secretion. Previously, we found that prolactin receptor (Prlr) signaling is important for this process, as heterozygous prolactin receptor-null (Prlr+/−) mice are glucose intolerant, had a lower number of β cells and lower serum insulin levels than wild type mice during pregnancy. However, since Prlr expression is ubiquitous, to determine its β-cell specific effects, we generated a transgenic mouse with a floxed Prlr allele under the control of an inducible promoter, allowing conditional deletion of Prlr from β cells in adult mice. In this study, we found that β-cell-specific Prlr reduction resulted in elevated blood glucose during pregnancy. Similar to our previous finding in mouse with global Prlr reduction, β-cell-specific Prlr loss led to a lower β-cell mass and a lower in vivo insulin level during pregnancy. However, these islets do not have an intrinsic insulin secretion defect when tested in vitro. Interestingly, when we compared the islet gene expression profile, using islets isolated from mice with global versus β-cell-specific Prlr reduction, we found some important differences in genes that regulate apoptosis and insulin secretion. This suggests that Prlr has both cell-autonomous and non-cell-autonomous effect on β cells, beyond its regulation of pro-proliferative genes.


Sign in / Sign up

Export Citation Format

Share Document