First-phase insulin secretion: does it exist in real life? Considerations on shape and function

2004 ◽  
Vol 287 (3) ◽  
pp. E371-E385 ◽  
Author(s):  
Andrea Caumo ◽  
Livio Luzi

To fulfill its preeminent function of regulating glucose metabolism, insulin secretion must not only be quantitatively appropriate but also have qualitative, dynamic properties that optimize insulin action on target tissues. This review focuses on the importance of the first-phase insulin secretion to glucose metabolism and attempts to illustrate the relationships between the first-phase insulin response to an intravenous glucose challenge and the early insulin response following glucose ingestion. A clear-cut first phase occurs only when the β-cell is exposed to a rapidly changing glucose stimulus, like the one induced by a brisk intravenous glucose administration. In contrast, peripheral insulin concentration following glucose ingestion does not bear any clear sign of biphasic shape. Coupling data from the literature with the results of a β-cell model simulation, a close relationship between the first-phase insulin response to intravenous glucose and the early insulin response to glucose ingestion emerges. It appears that the same ability of the β-cell to produce a pronounced first phase in response to an intravenous glucose challenge can generate a rapidly increasing early phase in response to the blood glucose profile following glucose ingestion. This early insulin response to glucose is enhanced by the concomitant action of incretins and neural responses to nutrient ingestion. Thus, under physiological circumstances, the key feature of the early insulin response seems to be the ability to generate a rapidly increasing insulin profile. This notion is corroborated by recent experimental evidence that the early insulin response, when assessed at the portal level with a frequent sampling, displays a pulsatile nature. Thus, even though the classical first phase does not exist under physiological conditions, the oscillatory behavior identified at the portal level does serve the purpose of rapidly exposing the liver to elevated insulin levels that, also in virtue of their up-and-down pattern, are particularly effective in restraining hepatic glucose production.

Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1441-1450 ◽  
Author(s):  
Isabel García-Tornadú ◽  
Ana M. Ornstein ◽  
Astrid Chamson-Reig ◽  
Michael B. Wheeler ◽  
David J. Hill ◽  
...  

The relationship between antidopaminergic drugs and glucose has not been extensively studied, even though chronic neuroleptic treatment causes hyperinsulinemia in normal subjects or is associated with diabetes in psychiatric patients. We sought to evaluate dopamine D2 receptor (D2R) participation in pancreatic function. Glucose homeostasis was studied in D2R knockout mice (Drd2−/−) mice and in isolated islets from wild-type and Drd2−/− mice, using different pharmacological tools. Pancreas immunohistochemistry was performed. Drd2−/− male mice exhibited an impairment of insulin response to glucose and high fasting glucose levels and were glucose intolerant. Glucose intolerance resulted from a blunted insulin secretory response, rather than insulin resistance, as shown by glucose-stimulated insulin secretion tests (GSIS) in vivo and in vitro and by a conserved insulin tolerance test in vivo. On the other hand, short-term treatment with cabergoline, a dopamine agonist, resulted in glucose intolerance and decreased insulin response to glucose in wild-type but not in Drd2−/− mice; this effect was partially prevented by haloperidol, a D2R antagonist. In vitro results indicated that GSIS was impaired in islets from Drd2−/− mice and that only in wild-type islets did dopamine inhibit GSIS, an effect that was blocked by a D2R but not a D1R antagonist. Finally, immunohistochemistry showed a diminished pancreatic β-cell mass in Drd2−/− mice and decreased β-cell replication in 2-month-old Drd2−/− mice. Pancreatic D2Rs inhibit glucose-stimulated insulin release. Lack of dopaminergic inhibition throughout development may exert a gradual deteriorating effect on insulin homeostasis, so that eventually glucose intolerance develops.


2006 ◽  
Vol 290 (4) ◽  
pp. E670-E677 ◽  
Author(s):  
Marianne O. Larsen ◽  
Bidda Rolin ◽  
Jeppe Sturis ◽  
Michael Wilken ◽  
Richard D. Carr ◽  
...  

At present, the best available estimators of β-cell mass in humans are those based on measurement of insulin levels or appearance rates in the circulation. In several animal models, these estimators have been validated against β-cell mass in lean animals. However, as many diabetic humans are obese, a correlation between in vivo tests and β-cell mass must be evaluated over a range of body weights to include different levels of insulin sensitivity. For this purpose, obese ( n = 10) and lean ( n = 25) Göttingen minipigs were studied. β-Cell mass had been reduced ( n = 16 lean, n = 5 obese) with a combination of nicotinamide (67 mg/kg) and streptozotocin (125 mg/kg), acute insulin response (AIR) to intravenous glucose and/or arginine was tested, pulsatile insulin secretion was evaluated by deconvolution ( n = 30), and β-cell mass was determined histologically. AIR to 0.3 ( r2= 0.4502, P < 0.0001) or 0.6 g/kg glucose ( r2= 0.6806, P < 0.0001), 67 mg/kg arginine ( r2= 0.5730, P < 0.001), and maximum insulin concentration ( r2= 0.7726, P < 0.0001) were all correlated to β-cell mass when evaluated across study groups, and regression lines were not different between lean and obese groups except for AIR to 0.3 g/kg glucose. Baseline pulse mass was not significantly correlated to β-cell mass across the study groups ( r2= 0.1036, NS), whereas entrained pulse mass did show a correlation across groups ( r2= 0.4049, P < 0.001). This study supports the use of in vivo tests of insulin responses to evaluate β-cell mass over a range of body weights in the minipig. Extensive stimulation of insulin secretion by a combination of glucose and arginine seems to give the best correlation to β-cell mass.


2004 ◽  
Vol 286 (2) ◽  
pp. R269-R272 ◽  
Author(s):  
Bo Ahrén

It has been hypothesized that the potent insulinotropic action of the gut incretin hormone glucagon-like peptide-1 (GLP-1) is exerted not only through a direct action on the beta cells but may be partially dependent on sensory nerves. We therefore examined the influence of GLP-1 in mice rendered sensory denervated by neonatal administration of capsaicin performed at days 2 and 5 (50 mg/kg). Control mice were given vehicle. Results show that at 10-16 wk of age in control mice, intravenous GLP-1 at 0.1 or 10 nmol/kg augmented the insulin response to intravenous glucose (1 g/kg) in association with improved glucose elimination. In contrast, in capsaicin-pretreated mice, GLP-1 at 0.1 nmol/kg could not augment the insulin response to intravenous glucose and no effect on glucose elimination was observed. Nevertheless, at the high dose of 10 nmol/kg, GLP-1 augmented the insulin response to glucose in capsaicin-pretreated mice as efficiently as in control mice. The insulin response to GLP-1 from isolated islets was not affected by neonatal capsaicin, and, furthermore, the in vivo insulin response to glucose was augmented whereas that to arginine was not affected by capsaicin. It is concluded that GLP-1-induced insulin secretion at a low dose in mice is dependent on intact sensory nerves and therefore indirectly mediated and that this distinguishes GLP-1 from other examined insulin secretagogues.


2013 ◽  
Vol 217 (1) ◽  
pp. 105-118 ◽  
Author(s):  
Melanie Tran ◽  
Linda A Gallo ◽  
Andrew J Jefferies ◽  
Karen M Moritz ◽  
Mary E Wlodek

Intrauterine growth restriction increases adult metabolic disease risk with evidence to suggest that suboptimal conditions in utero can have transgenerational effects. We determined whether impaired glucose tolerance, reduced insulin secretion, and pancreatic deficits are evident in second-generation (F2) male and female offspring from growth-restricted mothers, in a rat model of uteroplacental insufficiency. Late gestation uteroplacental insufficiency was induced by bilateral uterine vessel ligation (restricted) or sham surgery (control) in Wistar-Kyoto rats. First-generation (F1) control and restricted females were mated with normal males and F2 offspring studied at postnatal day 35 and at 6 and 12 months. F2 glucose tolerance, insulin secretion, and sensitivity were assessed at 6 and 12 months and pancreatic morphology was quantified at all study ages. At 6 months, F2 restricted male offspring exhibited blunted first-phase insulin response (−35%), which was associated with reduced pancreatic β-cell mass (−29%). By contrast, F2 restricted females had increased β-cell mass despite reduced first-phase insulin response (−38%). This was not associated with any changes in plasma estradiol concentrations. Regardless of maternal birth weight, F2 control and restricted males had reduced homeostatic model assessment of insulin resistance and elevated plasma triglyceride concentrations at 6 months and reduced whole-body insulin sensitivity at 6 and 12 months compared with females. We report that low maternal birth weight is associated with reduced first-phase insulin response and gender-specific differences in pancreatic morphology in the F2. Further studies will define the mode(s) of disease transmission, including direct insults to developing gametes, adverse maternal responses to pregnancy, or inherited mechanisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tao Yuan ◽  
Shuoning Song ◽  
Tianyi Zhao ◽  
Yanbei Duo ◽  
Shihan Wang ◽  
...  

BackgroundThe increase in diabetes worldwide is alarming. Decreased acute insulin response to intravenous glucose tolerance test (IVGTT) during first-phase insulin secretion (FPIS) is a characteristic of diabetes. However, knowledge of the insulin secretion characteristics identified by different time to glucose peak in subjects with different metabolic state is sparse.AimsThis study aimed to find different patterns of FPIS in subjects with normal glucose tolerance (NGT) and analyzed the relationship between insulin secretion patterns and the risk for development of type 2 diabetes mellitus (T2DM).MethodsA total of 126 subjects were divided into three groups during a 10-min IVGTT, including NGT with time to glucose peak after 3 min (G1, n = 21), NGT with time to glucose peak at 3 min (G2, n = 95), and prediabetes or diabetes with time to glucose peak at 3 min (G3, n = 10). Glucose, insulin, and C-peptide concentrations at 0, 3, 5, 7, and 10 min during the IVGTT were tested. IVGTT-based indices were calculated to evaluate the insulin secretion and insulin sensitivity.ResultsAge, body mass index (BMI), waist-to-hip ratio, triglyceride (TG), and hemoglobin A1c (HbA1c) of subjects were gradually higher, while high-density lipoprotein cholesterol (HDL-C) was gradually lower from G1 to G3 (p for linear trend &lt;0.05), and the differences between G1 and G2 were also statistically significant (p &lt; 0.05). Glucose peak of most participants in G1 converged at 5 min, and the curves shape of insulin and C-peptide in G2 were the sharpest among three groups. There was no significant difference in all IVGTT-based indices between G1 and G2, but AUCIns, AUCIns/AUCGlu, and △Ins3/△Glu3 in G2 were the highest, and the p-value for linear trend of those indices among three groups were statistically significant (p &lt; 0.05).ConclusionsTwo patterns of FPIS were in subjects with NGT, while subjects with later time to glucose peak during FPIS might be less likely to develop T2DM in the future.


2007 ◽  
Vol 292 (1) ◽  
pp. E54-E60 ◽  
Author(s):  
Marco Campioni ◽  
Gianna Toffolo ◽  
Lynne T. Shuster ◽  
F. John Service ◽  
Robert A. Rizza ◽  
...  

The aim of this study is to gain greater insight into the mechanism whereby “incretins” (greater insulinemia after oral than intravenous glucose) enhance insulin secretion. To do so, we use a model of C-peptide secretion to reanalyze data from a previously published study in which glycemic profiles observed following glucose ingestion were matched in the same 10 subjects by means of an intravenous glucose infusion. We report that incretins increase insulin secretion by enhancing both the dynamic (to the rate of increase of glucose) and static (to given glucose concentration) response with an increase of 58% for the static (Φs = 16.4 ± 1.8 vs. 24.6 ± 2.0 10−9 min−1, P = 0.01) and 63% for the dynamic (Φd = 278 ± 32 vs. 463 ± 86 10−9, P = 0.02) indexes. Since increases in the dynamic response to glucose are believed to be due to an increase in the rate of docking, and exocytosis of insulin containing granules and increases in the static response to glucose are believed to be caused by a shift in the sensitivity of the β-cell to glucose, these results suggest that incretins may modulate more than one step in the β-cell insulin secretory cascade.


1973 ◽  
Vol 72 (1) ◽  
pp. 46-53 ◽  
Author(s):  
D. S. Turner ◽  
D. A. B. Young

ABSTRACT The insulin secretory response in the rat to intravenous glucose was found to be greatly impaired by fasting for three days, whereas that to orally administered glucose was not significantly affected. Rats fasted for two days were given either protein or starch pellets for six hours, and then fasted for a further eighteen hours before the intravenous glucose test. The protein pre-feeding failed to affect significantly the subsequent insulin secretory response to intravenous glucose, whereas starch prefeeding greatly enhanced it. It is suggested that intestinal hormones released by glucose ingestion may exert not only an acute effect on insulin release, but also a 'priming' effect on the insulin release mechanism of the β cell, which enables it to respond to the subsequent stimulus of glucose alone.


2011 ◽  
Vol 300 (5) ◽  
pp. E817-E823 ◽  
Author(s):  
Alice S. Green ◽  
Antoni R. Macko ◽  
Paul J. Rozance ◽  
Dustin T. Yates ◽  
Xiaochuan Chen ◽  
...  

GSIS is often measured in the sheep fetus by a square-wave hyperglycemic clamp, but maximal β-cell responsiveness and effects of fetal number and sex difference have not been fully evaluated. We determined the dose-response curve for GSIS in fetal sheep (0.9 of gestation) by increasing plasma glucose from euglycemia in a stepwise fashion. The glucose-insulin response was best fit by curvilinear third-order polynomial equations for singletons ( y = 0.018 x3 − 0.26 x2 + 1.2 x − 0.64) and twins ( y = −0.012 x3 + 0.043 x2 + 0.40 x − 0.16). In singles, maximal insulin secretion was achieved at 3.4 ± 0.2 mmol/l glucose but began to plateau after 2.4 ± 0.2 mmol/l glucose (90% of maximum), whereas the maximum for twins was reached at 4.8 ± 0.4 mmol/l glucose. In twin ( n = 18) and singleton ( n = 49) fetuses, GSIS was determined with a square-wave hyperglycemic clamp >2.4 mmol/l glucose. Twins had a lower basal glucose concentration, and plasma insulin concentrations were 59 ( P < 0.01) and 43% ( P < 0.05) lower in twins than singletons during the euglycemic and hyperglycemic periods, respectively. The basal glucose/insulin ratio was approximately doubled in twins vs. singles ( P < 0.001), indicating greater insulin sensitivity. In a separate cohort of fetuses, twins ( n = 8) had lower body weight ( P < 0.05) and β-cell mass ( P < 0.01) than singleton fetuses ( n = 7) as a result of smaller pancreata ( P < 0.01) and a positive correlation ( P < 0.05) between insulin immunopositive area and fetal weight ( P < 0.05). No effects of sex difference on GSIS or β-cell mass were observed. These findings indicate that insulin secretion is less responsive to physiological glucose concentrations in twins, due in part to less β-cell mass.


1978 ◽  
Vol 235 (5) ◽  
pp. E467 ◽  
Author(s):  
A F Philipps ◽  
B S Carson ◽  
G Meschia ◽  
F C Battaglia

The relationships between arterial plasma insulin, glucose, and fructose concentrations during the fed and fasted state were studied in seven fetal lambs and their mothers. A significant correlation between insulin and glucose concentration was noted in all fetal lambs and in their mothers. Fetal sensitivity to glucose, as measured by the slopes of the insulin-response curves, was equal to that of the adult although the fetal response was shifted to the left of the maternal. Glucose infusion in four fetal lambs caused significant insulin elevations but no early insulin response (phase I). Maternal fasting caused no alteration in glucose-induced response in the fetus. Similar glucose infusions in newborn and 1-mo-old lambs demonstrated significant early-phase insulin secretion. Basal insulin to glucose ratios were consistent with an adult pattern as early as 3 days after birth.


2000 ◽  
Vol 279 (3) ◽  
pp. E520-E528 ◽  
Author(s):  
Thomas Laedtke ◽  
Lise Kjems ◽  
Niels Pørksen ◽  
Ole Schmitz ◽  
Johannes Veldhuis ◽  
...  

Impaired insulin secretion in type 2 diabetes is characterized by decreased first-phase insulin secretion, an increased proinsulin-to-insulin molar ratio in plasma, abnormal pulsatile insulin release, and heightened disorderliness of insulin concentration profiles. In the present study, we tested the hypothesis that these abnormalities are at least partly reversed by a period of overnight suspension of β-cell secretory activity achieved by somatostatin infusion. Eleven patients with type 2 diabetes were studied twice after a randomly ordered overnight infusion of either somatostatin or saline with the plasma glucose concentration clamped at ∼8 mmol/l. Controls were studied twice after overnight saline infusions and then at a plasma glucose concentration of either 4 or 8 mmol/l. We report that in patients with type 2 diabetes, 1) as in nondiabetic humans, insulin is secreted in discrete insulin secretory bursts; 2) the frequency of pulsatile insulin secretion is normal; 3) the insulin pulse mass is diminished, leading to decreased insulin secretion, but this defect can be overcome acutely by β-cell rest with somatostatin; 4) the reported loss of orderliness of insulin secretion, attenuated first-phase insulin secretion, and elevated proinsulin-to-insulin molar ratio also respond favorably to overnight inhibition by somatostatin. The results of these clinical experiments suggest the conclusion that multiple parameters of abnormal insulin secretion in patients with type 2 diabetes mechanistically reflect cellular depletion of immediately secretable insulin that can be overcome by β-cell rest.


Sign in / Sign up

Export Citation Format

Share Document