scholarly journals An AMPK/Axin1-Rac1 signaling pathway mediates contraction-regulated glucose uptake in skeletal muscle cells

2020 ◽  
Vol 318 (3) ◽  
pp. E330-E342 ◽  
Author(s):  
Yingying Yue ◽  
Chang Zhang ◽  
Xuejiao Zhang ◽  
Shitian Zhang ◽  
Qian Liu ◽  
...  

Contraction stimulates skeletal muscle glucose uptake predominantly through activation of AMP-activated protein kinase (AMPK) and Rac1. However, the molecular details of how contraction activates these signaling proteins are not clear. Recently, Axin1 has been shown to form a complex with AMPK and liver kinase B1 during glucose starvation-dependent activation of AMPK. Here, we demonstrate that electrical pulse-stimulated (EPS) contraction of C2C12 myotubes or treadmill exercise of C57BL/6 mice enhanced reciprocal coimmunoprecipitation of Axin1 and AMPK from myotube lysates or gastrocnemius muscle tissue. Interestingly, EPS or exercise upregulated total cellular Axin1 levels in an AMPK-dependent manner in C2C12 myotubes and gastrocnemius mouse muscle, respectively. Also, direct activation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleotide treatment of C2C12 myotubes or gastrocnemius muscle elevated Axin1 protein levels. On the other hand, siRNA-mediated Axin1 knockdown lessened activation of AMPK in contracted myotubes. Further, AMPK inhibition with compound C or siRNA-mediated knockdown of AMPK or Axin1 blocked contraction-induced GTP loading of Rac1, p21-activated kinase phosphorylation, and contraction-stimulated glucose uptake. In summary, our results suggest that an AMPK/Axin1-Rac1 signaling pathway mediates contraction-stimulated skeletal muscle glucose uptake.

Author(s):  
Chih-Chieh Chen ◽  
Chong-Kuei Lii ◽  
Chia-Wen Lo ◽  
Yi-Hsueh Lin ◽  
Ya-Chen Yang ◽  
...  

14-Deoxy-11,12-didehydroandrographolide (deAND), a bioactive component of Andrographis paniculata, has antidiabetic activity. AMP-activated protein kinase (AMPK) regulates glucose transport and ameliorates insulin resistance. The aim of the present study was to investigate whether activation of AMPK is involved in the mechanism by which deAND ameliorates insulin resistance in muscles. deAND amounts up to 40 [Formula: see text]M dose-dependently activated phosphorylation of AMPK[Formula: see text] and TBC1D1 in C2C12 myotubes. In addition, deAND significantly activated phosphorylation of LKB1 at 6 h after treatment, and this activation was maintained up to 48 h. deAND increased glucose uptake at 18 h after treatment, and this increase was time dependent up to 72 h. Compound C, an inhibitor of AMPK, suppressed deAND-induced phosphorylation of AMPK[Formula: see text] and TBC1D1 and reversed the effect on glucose uptake. In addition, the expression of GLUT4 mRNA and protein in C2C12 myotubes was up-regulated by deAND in a time-dependent manner. Promotion of GLUT4 gene transcription was verified by a pGL3-GLUT4 (837 bp) reporter assay. deAND also increased the nuclear translocation of MEF-2A and PPAR[Formula: see text]. After 16 weeks of feeding, the high-fat diet (HFD) inhibited phosphorylation of AMPK[Formula: see text] and TBC1D1 in skeletal muscle of obese C57BL/6JNarl mice, and deactivation of AMPK[Formula: see text] and TBC1D1 by the HFD was abolished by deAND supplementation. Supplementation with deAND significantly promoted membrane translocation of GLUT4 compared with the HFD group. Supplementation also significantly increased GLUT4 mRNA and protein expression in skeletal muscle compared with the HFD group. The hypoglycemic effects of deAND are likely associated with activation of the LKB1/AMPK[Formula: see text]/TBC1D1/GLUT4 signaling pathway and stimulation of MEF-2A- and PPAR[Formula: see text]-dependent GLUT4 gene expression, which account for the glucose uptake into skeletal muscle and lower blood glucose levels.


2008 ◽  
Vol 198 (3) ◽  
pp. 561-569 ◽  
Author(s):  
Wenbin Shang ◽  
Ying Yang ◽  
Libin Zhou ◽  
Boren Jiang ◽  
Hua Jin ◽  
...  

A series of clinical trials and animal experiments have demonstrated that ginseng and its major active constituent, ginsenosides, possess glucose-lowering action. In our previous study, ginsenoside Rb1 has been shown to regulate peroxisome proliferator-activated receptor γ activity to facilitate adipogenesis of 3T3-L1 cells. However, the effect of Rb1 on glucose transport in insulin-sensitive cells and its molecular mechanism need further elucidation. In this study, Rb1 significantly stimulated basal and insulin-mediated glucose uptake in a time- and dose-dependent manner in 3T3-L1 adipocytes and C2C12 myotubes; the maximal effect was achieved at a concentration of 1 μM and a time of 3 h. In adipocytes, Rb1 promoted GLUT1 and GLUT4 translocations to the cell surface, which was examined by analyzing their distribution in subcellular membrane fractions, and enhanced translocation of GLUT4 was confirmed using the transfection of GLUT4-green fluorescence protein in Chinese Hamster Ovary cells. Meanwhile, Rb1 increased the phosphorylation of insulin receptor substrate-1 and protein kinase B (PKB), and stimulated phosphatidylinositol 3-kinase (PI3K) activity in the absence of the activation of the insulin receptor. Rb1-induced glucose uptake as well as GLUT1 and GLUT4 translocations was inhibited by the PI3K inhibitor. These results suggest that ginsenoside Rb1 stimulates glucose transport in insulin-sensitive cells by promoting translocations of GLUT1 and GLUT4 by partially activating the insulin signaling pathway. These findings are useful in understanding the hypoglycemic and anti-diabetic properties of ginseng and ginsenosides.


2011 ◽  
Vol 111 (1) ◽  
pp. 125-134 ◽  
Author(s):  
Marcia J. Abbott ◽  
Lindsey D. Bogachus ◽  
Lorraine P. Turcotte

AMP-activated protein kinase (AMPK) is a fuel sensor in skeletal muscle with multiple downstream signaling targets that may be triggered by increases in intracellular Ca2+ concentration ([Ca2+]). The purpose of this study was to determine whether increases in intracellular [Ca2+] induced by caffeine act solely via AMPKα2 and whether AMPKα2 is essential to increase glucose uptake, fatty acid (FA) uptake, and FA oxidation in contracting skeletal muscle. Hindlimbs from wild-type (WT) or AMPKα2 dominant-negative (DN) transgene mice were perfused during rest ( n = 11), treatment with 3 mM caffeine ( n = 10), or muscle contraction ( n = 11). Time-dependent effects on glucose and FA uptake were uncovered throughout the 20-min muscle contraction perfusion period ( P < 0.05). Glucose uptake rates did not increase in DN mice during muscle contraction until the last 5 min of the protocol ( P < 0.05). FA uptake rates were elevated at the onset of muscle contraction and diminished by the end of the protocol in DN mice ( P < 0.05). FA oxidation rates were abolished in the DN mice during muscle contraction ( P < 0.05). The DN transgene had no effect on caffeine-induced FA uptake and oxidation ( P > 0.05). Glucose uptake rates were blunted in caffeine-treated DN mice ( P < 0.05). The DN transgene resulted in a greater use of intramuscular triglycerides as a fuel source during muscle contraction. The DN transgene did not alter caffeine- or contraction-mediated changes in the phosphorylation of Ca2+/calmodulin-dependent protein kinase I or ERK1/2 ( P > 0.05). These data suggest that AMPKα2 is involved in the regulation of substrate uptake in a time-dependent manner in contracting muscle but is not necessary for regulation of FA uptake and oxidation during caffeine treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Vitor R. Muñoz ◽  
Rafael C. Gaspar ◽  
Matheus B. Severino ◽  
Ana P. A. Macêdo ◽  
Fernando M. Simabuco ◽  
...  

Physical exercise is considered a fundamental strategy in improving insulin sensitivity and glucose uptake in skeletal muscle. However, the molecular mechanisms underlying this regulation, primarily on skeletal muscle glucose uptake, are not fully understood. Recent evidence has shown that Rho-kinase (ROCK) isoforms play a pivotal role in regulating skeletal muscle glucose uptake and systemic glucose homeostasis. The current study evaluated the effect of physical exercise on ROCK2 signaling in skeletal muscle of insulin-resistant obese animals. Physiological (ITT) and molecular analysis (immunoblotting, and RT-qPCR) were performed. The contents of RhoA and ROCK2 protein were decreased in skeletal muscle of obese mice compared to control mice but were restored to normal levels in response to physical exercise. The exercised animals also showed higher phosphorylation of insulin receptor substrate 1 (IRS1 Serine 632/635) and protein kinase B (Akt) in the skeletal muscle. However, phosphatase and tensin homolog (PTEN) and protein-tyrosine phosphatase-1B (PTP-1B), both inhibitory regulators for insulin action, were increased in obesity but decreased after exercise. The impact of ROCK2 action on muscle insulin signaling is further underscored by the fact that impaired IRS1 and Akt phosphorylation caused by palmitate in C2C12 myotubes was entirely restored by ROCK2 overexpression. These results suggest that the exercise-induced upregulation of RhoA-ROCK2 signaling in skeletal muscle is associated with increased systemic insulin sensitivity in obese mice and further implicate that muscle ROCK2 could be a potential target for treating obesity-linked metabolic disorders.


1996 ◽  
Vol 271 (6) ◽  
pp. E1067-E1072 ◽  
Author(s):  
A. D. Baron ◽  
G. Brechtel-Hook ◽  
A. Johnson ◽  
J. Cronin ◽  
R. Leaming ◽  
...  

To better define the time course of skeletal muscle glucose uptake and its modulation by changes in perfusion, we performed systemic euglycemic-hyperinsulinemic clamps (40 mU.m-2.min-1) for a 90-min period in a group of lean, insulin-sensitive subjects (n = 9) on two occasions (approximately 4 wk apart) with insulin-mediated vasodilation intact or inhibited. Insulin-mediated vasodilation was inhibited by an intrafemoral artery infusion of NG-monomethyl-L-arginine (L-NMMA), a specific inhibitor of nitric oxide synthase. During the study, leg blood flow (LBF) and arteriovenous glucose difference (AVG delta) were measured every 10 min; leg glucose uptake (LGU) was calculated as LGU = LBF x AVG delta. The systemic insulin infusion caused a time-dependent increase in LBF from 0.194 +/- 0.024 to 0.349 +/- 0.046 l/min (P < 0.01). The intrafemoral artery infusion of L-NMMA completely inhibited this increase in LBF. AVG delta, LGU, and whole body glucose disposal rates increased in a time-dependent manner in both studies. The maximum AVG delta was lower with insulin-mediated vasodilation intact than when inhibited (25.9 +/- 2.5 vs. 35.0 +/- 1.6 mg/dl, P < 0.001). The time to achieve half-maximal (T1/2) AVG delta was somewhat longer with insulin-mediated vasodilation intact compared with inhibited (35.6 +/- 4.1 vs. 29.7 +/- 1.6 min, P < 0.01). Maximal LGU was 93.9 +/- 26.8 and 57.2 +/- 11.6 mg/min (P < 0.005), and the T1/2 LGU was 50.2 +/- 16.0 and 36.3 +/- 8.8 min (P = 0.1) during intact and inhibited insulin-mediated vasodilation, respectively. Thus insulin-mediated vasodilation has a modest effect in slowing the time course at which insulin stimulates glucose uptake but has a marked effect in augmenting the maximal rate of insulin-stimulated glucose uptake in skeletal muscle. Impaired insulin-mediated vasodilation, as observed in patients with essential hypertension, may explain, at least in part, the insulin resistance observed in these patients.


2015 ◽  
Vol 40 (4) ◽  
pp. 407-413 ◽  
Author(s):  
Madina Naimi ◽  
Theodoros Tsakiridis ◽  
Theocharis C. Stamatatos ◽  
Dimitris I. Alexandropoulos ◽  
Evangelia Tsiani

Stimulation of the energy sensor AMP-activated kinase (AMPK) has been viewed as a targeted approach to increase glucose uptake by skeletal muscle and control blood glucose homeostasis. Rosemary extract (RE) has been reported to activate AMPK in hepatocytes and reduce blood glucose levels in vivo but its effects on skeletal muscle are not known. In the present study, we examined the effects of RE and the mechanism of regulation of glucose uptake in muscle cells. RE stimulated glucose uptake in L6 myotubes in a dose- and time-dependent manner. Maximum stimulation was seen with 5 μg/mL of RE for 4 h (184% ± 5.07% of control, p < 0.001), a response comparable to maximum insulin (207% ± 5.26%, p < 0.001) and metformin (216% ± 8.77%, p < 0.001) stimulation. RE did not affect insulin receptor substrate 1 and Akt phosphorylation but significantly increased AMPK and acetyl-CoA carboxylase phosphorylation. Furthermore, the RE-stimulated glucose uptake was significantly reduced by the AMPK inhibitor compound C, but remained unchanged by the PI3K inhibitor, wortmannin. RE did not affect GLUT4 or GLUT1 glucose transporter translocation in contrast with a significant translocation of both transporters seen with insulin or metformin treatment. Our study is the first to show a direct effect of RE on muscle cell glucose uptake by a mechanism that involves AMPK activation.


2010 ◽  
Vol 298 (5) ◽  
pp. E1058-E1071 ◽  
Author(s):  
Wenyan Niu ◽  
Philip J. Bilan ◽  
Shuhei Ishikura ◽  
Jonathan D. Schertzer ◽  
Ariel Contreras-Ferrat ◽  
...  

Muscle contraction stimulates glucose uptake acutely to increase energy supply, but suitable cellular models that faithfully reproduce this complex phenomenon are lacking. To this end, we have developed a cellular model of contracting C2C12 myotubes overexpressing GLUT4 with an exofacial myc-epitope tag (GLUT4 myc) and explored stimulation of GLUT4 traffic by physiologically relevant agents. Carbachol (an acetylcholine receptor agonist) induced a gain in cell surface GLUT4 myc that was mediated by nicotinic acetylcholine receptors. Carbachol also activated AMPK, and this response was sensitive to the contractile myosin ATPase inhibitor N-benzyl- p-toluenesulfonamide. The gain in surface GLUT4 myc elicited by carbachol or by the AMPK activator 5-amino-4-carboxamide-1 β-ribose was sensitive to chemical inhibition of AMPK activity by compound C and partially reduced by siRNA-mediated knockdown of AMPK catalytic subunits or LKB1. In addition, the carbachol-induced gain in cell surface GLUT4 myc was partially sensitive to chelation of intracellular calcium with BAPTA-AM. However, the carbachol-induced gain in cell surface GLUT4 myc was not sensitive to the CaMKK inhibitor STO-609 despite expression of both isoforms of this enzyme and a rise in cytosolic calcium by carbachol. Therefore, separate AMPK- and calcium-dependent signals contribute to mobilizing GLUT4 in response to carbachol, providing an in vitro cell model that recapitulates the two major signals whereby acute contraction regulates glucose uptake in skeletal muscle. This system will be ideal to further analyze the underlying molecular events of contraction-regulated GLUT4 traffic.


2008 ◽  
Vol 28 (18) ◽  
pp. 5634-5645 ◽  
Author(s):  
Francesco Oriente ◽  
Luis Cesar Fernandez Diaz ◽  
Claudia Miele ◽  
Salvatore Iovino ◽  
Silvia Mori ◽  
...  

ABSTRACT We have examined glucose homeostasis in mice hypomorphic for the homeotic transcription factor gene Prep1. Prep1-hypomorphic (Prep1 i / i ) mice exhibit an absolute reduction in circulating insulin levels but normal glucose tolerance. In addition, these mice exhibit protection from streptozotocin-induced diabetes and enhanced insulin sensitivity with improved glucose uptake and insulin-dependent glucose disposal by skeletal muscle. This muscle phenotype does not depend on reduced expression of the known Prep1 transcription partner, Pbx1. Instead, in Prep1 i / i muscle, we find normal Pbx1 but reduced levels of the recently identified novel Prep1 interactor p160. Consistent with this reduction, we find a muscle-selective increase in mRNA and protein levels of PGC-1α, accompanied by enhanced expression of the GLUT4 transporter, responsible for insulin-stimulated glucose uptake in muscle. Indeed, using L6 skeletal muscle cells, we induced the opposite effects by overexpressing Prep1 or p160, but not Pbx1. In vivo skeletal muscle delivery of p160 cDNA in Prep1 i / i mice also reverses the molecular phenotype. Finally, we show that Prep1 controls the stability of the p160 protein. We conclude that Prep1 controls insulin sensitivity through the p160-GLUT4 pathway.


Sign in / Sign up

Export Citation Format

Share Document