Effect of perfusion rate on the time course of insulin-mediated skeletal muscle glucose uptake

1996 ◽  
Vol 271 (6) ◽  
pp. E1067-E1072 ◽  
Author(s):  
A. D. Baron ◽  
G. Brechtel-Hook ◽  
A. Johnson ◽  
J. Cronin ◽  
R. Leaming ◽  
...  

To better define the time course of skeletal muscle glucose uptake and its modulation by changes in perfusion, we performed systemic euglycemic-hyperinsulinemic clamps (40 mU.m-2.min-1) for a 90-min period in a group of lean, insulin-sensitive subjects (n = 9) on two occasions (approximately 4 wk apart) with insulin-mediated vasodilation intact or inhibited. Insulin-mediated vasodilation was inhibited by an intrafemoral artery infusion of NG-monomethyl-L-arginine (L-NMMA), a specific inhibitor of nitric oxide synthase. During the study, leg blood flow (LBF) and arteriovenous glucose difference (AVG delta) were measured every 10 min; leg glucose uptake (LGU) was calculated as LGU = LBF x AVG delta. The systemic insulin infusion caused a time-dependent increase in LBF from 0.194 +/- 0.024 to 0.349 +/- 0.046 l/min (P < 0.01). The intrafemoral artery infusion of L-NMMA completely inhibited this increase in LBF. AVG delta, LGU, and whole body glucose disposal rates increased in a time-dependent manner in both studies. The maximum AVG delta was lower with insulin-mediated vasodilation intact than when inhibited (25.9 +/- 2.5 vs. 35.0 +/- 1.6 mg/dl, P < 0.001). The time to achieve half-maximal (T1/2) AVG delta was somewhat longer with insulin-mediated vasodilation intact compared with inhibited (35.6 +/- 4.1 vs. 29.7 +/- 1.6 min, P < 0.01). Maximal LGU was 93.9 +/- 26.8 and 57.2 +/- 11.6 mg/min (P < 0.005), and the T1/2 LGU was 50.2 +/- 16.0 and 36.3 +/- 8.8 min (P = 0.1) during intact and inhibited insulin-mediated vasodilation, respectively. Thus insulin-mediated vasodilation has a modest effect in slowing the time course at which insulin stimulates glucose uptake but has a marked effect in augmenting the maximal rate of insulin-stimulated glucose uptake in skeletal muscle. Impaired insulin-mediated vasodilation, as observed in patients with essential hypertension, may explain, at least in part, the insulin resistance observed in these patients.

2001 ◽  
Vol 280 (1) ◽  
pp. E130-E142 ◽  
Author(s):  
Ben B. Yaspelkis ◽  
James R. Davis ◽  
Maziyar Saberi ◽  
Toby L. Smith ◽  
Reza Jazayeri ◽  
...  

In addition to suppressing appetite, leptin may also modulate insulin secretion and action. Leptin was administered here to insulin-resistant rats to determine its effects on secretagogue-stimulated insulin release, whole body glucose disposal, and insulin-stimulated skeletal muscle glucose uptake and transport. Male Wistar rats were fed either a normal (Con) or a high-fat (HF) diet for 3 or 6 mo. HF rats were then treated with either vehicle (HF), leptin (HF-Lep, 10 mg · kg−1 · day−1 sc), or food restriction (HF-FR) for 12–15 days. Glucose tolerance and skeletal muscle glucose uptake and transport were significantly impaired in HF compared with Con. Whole body glucose tolerance and rates of insulin-stimulated skeletal muscle glucose uptake and transport in HF-Lep were similar to those of Con and greater than those of HF and HF-FR. The insulin secretory response to either glucose or tolbutamide (a pancreatic β-cell secretagogue) was not significantly diminished in HF-Lep. Total and plasma membrane skeletal muscle GLUT-4 protein concentrations were similar in Con and HF-Lep and greater than those in HF and HF-FR. The findings suggest that chronic leptin administration reversed a high-fat diet-induced insulin-resistant state, without compromising insulin secretion.


1995 ◽  
Vol 268 (2) ◽  
pp. R492-R497 ◽  
Author(s):  
C. H. Lang ◽  
M. Ajmal ◽  
A. G. Baillie

Intracerebroventricular injection of N-methyl-D-aspartate (NMDA) produces hyperglycemia and increases whole body glucose uptake. The purpose of the present study was to determine in rats which tissues are responsible for the elevated rate of glucose disposal. NMDA was injected intracerebroventricularly, and the glucose metabolic rate (Rg) was determined for individual tissues 20-60 min later using 2-deoxy-D-[U-14C]glucose. NMDA decreased Rg in skin, ileum, lung, and liver (30-35%) compared with time-matched control animals. In contrast, Rg in skeletal muscle and heart was increased 150-160%. This increased Rg was not due to an elevation in plasma insulin concentrations. In subsequent studies, the sciatic nerve in one leg was cut 4 h before injection of NMDA. NMDA increased Rg in the gastrocnemius (149%) and soleus (220%) in the innervated leg. However, Rg was not increased after NMDA in contralateral muscles from the denervated limb. Data from a third series of experiments indicated that the NMDA-induced increase in Rg by innervated muscle and its abolition in the denervated muscle were not due to changes in muscle blood flow. The results of the present study indicate that 1) central administration of NMDA increases whole body glucose uptake by preferentially stimulating glucose uptake by skeletal muscle, and 2) the enhanced glucose uptake by muscle is neurally mediated and independent of changes in either the plasma insulin concentration or regional blood flow.


Author(s):  
Chih-Chieh Chen ◽  
Chong-Kuei Lii ◽  
Chia-Wen Lo ◽  
Yi-Hsueh Lin ◽  
Ya-Chen Yang ◽  
...  

14-Deoxy-11,12-didehydroandrographolide (deAND), a bioactive component of Andrographis paniculata, has antidiabetic activity. AMP-activated protein kinase (AMPK) regulates glucose transport and ameliorates insulin resistance. The aim of the present study was to investigate whether activation of AMPK is involved in the mechanism by which deAND ameliorates insulin resistance in muscles. deAND amounts up to 40 [Formula: see text]M dose-dependently activated phosphorylation of AMPK[Formula: see text] and TBC1D1 in C2C12 myotubes. In addition, deAND significantly activated phosphorylation of LKB1 at 6 h after treatment, and this activation was maintained up to 48 h. deAND increased glucose uptake at 18 h after treatment, and this increase was time dependent up to 72 h. Compound C, an inhibitor of AMPK, suppressed deAND-induced phosphorylation of AMPK[Formula: see text] and TBC1D1 and reversed the effect on glucose uptake. In addition, the expression of GLUT4 mRNA and protein in C2C12 myotubes was up-regulated by deAND in a time-dependent manner. Promotion of GLUT4 gene transcription was verified by a pGL3-GLUT4 (837 bp) reporter assay. deAND also increased the nuclear translocation of MEF-2A and PPAR[Formula: see text]. After 16 weeks of feeding, the high-fat diet (HFD) inhibited phosphorylation of AMPK[Formula: see text] and TBC1D1 in skeletal muscle of obese C57BL/6JNarl mice, and deactivation of AMPK[Formula: see text] and TBC1D1 by the HFD was abolished by deAND supplementation. Supplementation with deAND significantly promoted membrane translocation of GLUT4 compared with the HFD group. Supplementation also significantly increased GLUT4 mRNA and protein expression in skeletal muscle compared with the HFD group. The hypoglycemic effects of deAND are likely associated with activation of the LKB1/AMPK[Formula: see text]/TBC1D1/GLUT4 signaling pathway and stimulation of MEF-2A- and PPAR[Formula: see text]-dependent GLUT4 gene expression, which account for the glucose uptake into skeletal muscle and lower blood glucose levels.


2015 ◽  
Vol 118 (9) ◽  
pp. 1113-1121 ◽  
Author(s):  
Yet Hoi Hong ◽  
Tony Frugier ◽  
Xinmei Zhang ◽  
Robyn M. Murphy ◽  
Gordon S. Lynch ◽  
...  

Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ−/−and nNOSμ+/+mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor NG-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ−/−and nNOSμ+/+mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (∼4%) were detected in muscles from nNOSμ−/−mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.


2001 ◽  
Vol 281 (1) ◽  
pp. E62-E71 ◽  
Author(s):  
Charles Lavigne ◽  
Frédéric Tremblay ◽  
Geneviève Asselin ◽  
Hélène Jacques ◽  
André Marette

In the present study, we tested the hypothesis that fish protein may represent a key constituent of fish with glucoregulatory activity. Three groups of rats were fed a high-fat diet in which the protein source was casein, fish (cod) protein, or soy protein; these groups were compared with a group of chow-fed controls. High-fat feeding led to severe whole body and skeletal muscle insulin resistance in casein- or soy protein-fed rats, as assessed by the euglycemic clamp technique coupled with measurements of 2-deoxy-d-[3H]glucose uptake rates by individual tissues. However, feeding cod protein fully prevented the development of insulin resistance in high fat-fed rats. These animals exhibited higher rates of insulin-mediated muscle glucose disposal that were comparable to those of chow-fed rats. The beneficial effects of cod protein occurred without any reductions in body weight gain, adipose tissue accretion, or expression of tumor necrosis factor-α in fat and muscle. Moreover, L6 myocytes exposed to cod protein-derived amino acids showed greater rates of insulin-stimulated glucose uptake compared with cells incubated with casein- or soy protein-derived amino acids. These data demonstrate that feeding cod protein prevents obesity-induced muscle insulin resistance in high fat-fed obese rats at least in part through a direct action of amino acids on insulin-stimulated glucose uptake in skeletal muscle cells.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Alba Moreno-Asso ◽  
Luke C McIlvenna ◽  
Rhiannon K Patten ◽  
Andrew J McAinch ◽  
Raymond J Rodgers ◽  
...  

Abstract Polycystic ovary syndrome (PCOS) is the most common female endocrine disorder affecting metabolic, reproductive and mental health of 8-13% of reproductive-age women. Insulin resistance (IR) appears to underpin the pathophysiology of PCOS and is present in approximately 85% of women with PCOS. This underlying IR has been identified as unique from, but synergistic with, obesity-induced IR (1). Skeletal muscle accounts for up to 85% of whole body insulin-stimulated glucose uptake, however, in PCOS this is reduced about 27% when assessed by hyperinsulinemic euglycemic clamp (2). Interestingly, this reduced insulin-stimulated glucose uptake observed in skeletal muscle tissue is not retained in cultured myotubes (3), suggesting that environmental factors may play a role in this PCOS-specific IR. Yet, the molecular mechanisms regulating IR remain unclear (4). Previous work suggested that Transforming Growth Factor Beta (TGFβ) superfamily ligands may be involved in the metabolic morbidity associated with PCOS (5). In this study, we investigated the effects of TGFβ1 (1, 5ng/ml), and the Anti-Müllerian hormone (AMH; 5, 10, 30ng/ml), a novel TGFβ superfamily ligand elevated in women with PCOS, as causal factors of IR in cultured myotubes from women with PCOS (n=10) and healthy controls (n=10). AMH negatively affected glucose uptake and insulin signalling increasing p-IRS1 (ser312) in a dose-dependent manner in myotubes from both women with and without PCOS. AMH did not appear to activate the canonical TGFβ/BMP signalling pathway. Conversely, TGFβ1 had an opposite effect in both PCOS and control myotubes cultures, decreasing phosphorylation of IRS1 (ser312) and enhancing glucose uptake via Smad2/3 signalling. In conclusion, these results suggest that AMH may play a role in skeletal muscle IR observed in PCOS, however, further research is required to elucidate its mechanisms of action and broader impact in this syndrome. References: (1) Stepto et al. Hum Reprod 2013 Mar;28(3):777-784. (2) Cassar et al. Hum Reprod 2016 Nov;31(11):2619-2631. (3) Corbould et al., Am J Physiol-Endoc 2005 May;88(5):E1047-54. (4) Stepto et al. J Clin Endocrinol Metab, 2019 Nov 1;104(11):5372-5381. (5) Raja-Khan et al. Reprod Sci 2014 Jan;21(1):20-31.


2020 ◽  
Vol 318 (3) ◽  
pp. E330-E342 ◽  
Author(s):  
Yingying Yue ◽  
Chang Zhang ◽  
Xuejiao Zhang ◽  
Shitian Zhang ◽  
Qian Liu ◽  
...  

Contraction stimulates skeletal muscle glucose uptake predominantly through activation of AMP-activated protein kinase (AMPK) and Rac1. However, the molecular details of how contraction activates these signaling proteins are not clear. Recently, Axin1 has been shown to form a complex with AMPK and liver kinase B1 during glucose starvation-dependent activation of AMPK. Here, we demonstrate that electrical pulse-stimulated (EPS) contraction of C2C12 myotubes or treadmill exercise of C57BL/6 mice enhanced reciprocal coimmunoprecipitation of Axin1 and AMPK from myotube lysates or gastrocnemius muscle tissue. Interestingly, EPS or exercise upregulated total cellular Axin1 levels in an AMPK-dependent manner in C2C12 myotubes and gastrocnemius mouse muscle, respectively. Also, direct activation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleotide treatment of C2C12 myotubes or gastrocnemius muscle elevated Axin1 protein levels. On the other hand, siRNA-mediated Axin1 knockdown lessened activation of AMPK in contracted myotubes. Further, AMPK inhibition with compound C or siRNA-mediated knockdown of AMPK or Axin1 blocked contraction-induced GTP loading of Rac1, p21-activated kinase phosphorylation, and contraction-stimulated glucose uptake. In summary, our results suggest that an AMPK/Axin1-Rac1 signaling pathway mediates contraction-stimulated skeletal muscle glucose uptake.


2011 ◽  
Vol 111 (1) ◽  
pp. 125-134 ◽  
Author(s):  
Marcia J. Abbott ◽  
Lindsey D. Bogachus ◽  
Lorraine P. Turcotte

AMP-activated protein kinase (AMPK) is a fuel sensor in skeletal muscle with multiple downstream signaling targets that may be triggered by increases in intracellular Ca2+ concentration ([Ca2+]). The purpose of this study was to determine whether increases in intracellular [Ca2+] induced by caffeine act solely via AMPKα2 and whether AMPKα2 is essential to increase glucose uptake, fatty acid (FA) uptake, and FA oxidation in contracting skeletal muscle. Hindlimbs from wild-type (WT) or AMPKα2 dominant-negative (DN) transgene mice were perfused during rest ( n = 11), treatment with 3 mM caffeine ( n = 10), or muscle contraction ( n = 11). Time-dependent effects on glucose and FA uptake were uncovered throughout the 20-min muscle contraction perfusion period ( P < 0.05). Glucose uptake rates did not increase in DN mice during muscle contraction until the last 5 min of the protocol ( P < 0.05). FA uptake rates were elevated at the onset of muscle contraction and diminished by the end of the protocol in DN mice ( P < 0.05). FA oxidation rates were abolished in the DN mice during muscle contraction ( P < 0.05). The DN transgene had no effect on caffeine-induced FA uptake and oxidation ( P > 0.05). Glucose uptake rates were blunted in caffeine-treated DN mice ( P < 0.05). The DN transgene resulted in a greater use of intramuscular triglycerides as a fuel source during muscle contraction. The DN transgene did not alter caffeine- or contraction-mediated changes in the phosphorylation of Ca2+/calmodulin-dependent protein kinase I or ERK1/2 ( P > 0.05). These data suggest that AMPKα2 is involved in the regulation of substrate uptake in a time-dependent manner in contracting muscle but is not necessary for regulation of FA uptake and oxidation during caffeine treatment.


2016 ◽  
Vol 310 (10) ◽  
pp. E838-E845 ◽  
Author(s):  
Yet Hoi Hong ◽  
Christine Yang ◽  
Andrew C. Betik ◽  
Robert S. Lee-Young ◽  
Glenn K. McConell

Nitric oxide influences intramuscular signaling that affects skeletal muscle glucose uptake during exercise. The role of the main NO-producing enzyme isoform activated during skeletal muscle contraction, neuronal nitric oxide synthase-μ (nNOSμ), in modulating glucose uptake has not been investigated in a physiological exercise model. In this study, conscious and unrestrained chronically catheterized nNOSμ+/+ and nNOSμ−/− mice either remained at rest or ran on a treadmill at 17 m/min for 30 min. Both groups of mice demonstrated similar exercise capacity during a maximal exercise test to exhaustion (17.7 ± 0.6 vs. 15.9 ± 0.9 min for nNOSμ+/+ and nNOSμ−/−, respectively, P > 0.05). Resting and exercise blood glucose levels were comparable between the genotypes. Very low levels of NOS activity were detected in skeletal muscle from nNOSμ−/− mice, and exercise increased NOS activity only in nNOSμ+/+ mice (4.4 ± 0.3 to 5.2 ± 0.4 pmol·mg−1·min−1, P < 0.05). Exercise significantly increased glucose uptake in gastrocnemius muscle (5- to 7-fold) and, surprisingly, more so in nNOSμ−/− than in nNOSμ+/+ mice ( P < 0.05). This is in parallel with a greater increase in AMPK phosphorylation during exercise in nNOSμ−/− mice. In conclusion, nNOSμ is not essential for skeletal muscle glucose uptake during exercise, and the higher skeletal muscle glucose uptake during exercise in nNOSμ−/− mice may be due to compensatory increases in AMPK activation.


1999 ◽  
Vol 276 (4) ◽  
pp. E706-E711 ◽  
Author(s):  
Teemu O. Takala ◽  
Pirjo Nuutila ◽  
Juhani Knuuti ◽  
Matti Luotolahti ◽  
Hannele Yki-Järvinen

There are no studies comparing myocardial metabolism between endurance- and resistance-trained athletes. We used 2-deoxy-2-[18F]fluoro-d-glucose and positron emission tomography combined with the euglycemic hyperinsulinemic clamp technique to compare the ability of insulin to stimulate myocardial, skeletal muscle, and whole body glucose uptake between weight lifters ( n = 8), endurance athletes ( n = 8), and sedentary men ( n = 9). Maximal aerobic power (ml ⋅ kg− 1⋅ min− 1) was higher in the endurance athletes (71 ± 2, P < 0.001) than the weight lifters (42 ± 2) and the sedentary men (42 ± 2). Skeletal muscle glucose uptake (μmol ⋅ kg muscle− 1⋅ min− 1) was enhanced in the endurance athletes (125 ± 16, P < 0.01) but was similar in weight lifters (59 ± 12) and sedentary (63 ± 7) men. The rate of glucose uptake per unit mass of myocardium (μmol ⋅ kg− 1⋅ min− 1) was similarly decreased in endurance athletes (544 ± 50) and weight lifters (651 ± 45) compared with sedentary men (1,041 ± 78, P < 0.001 vs. endurance athletes and weight lifters). Both groups of athletes had increased left ventricular mass. Consequently, total left ventricular glucose uptake was comparable in all groups. These data demonstrate that aerobic but not resistance training is associated with enhanced insulin sensitivity in skeletal muscle. Despite this, cardiac changes are remarkably similar in weight lifters and endurance athletes and are characterized by an increase in left ventricular mass and diminished insulin-stimulated glucose uptake per heart mass.


Sign in / Sign up

Export Citation Format

Share Document