Increased skeletal muscle glucose uptake by rosemary extract through AMPK activation

2015 ◽  
Vol 40 (4) ◽  
pp. 407-413 ◽  
Author(s):  
Madina Naimi ◽  
Theodoros Tsakiridis ◽  
Theocharis C. Stamatatos ◽  
Dimitris I. Alexandropoulos ◽  
Evangelia Tsiani

Stimulation of the energy sensor AMP-activated kinase (AMPK) has been viewed as a targeted approach to increase glucose uptake by skeletal muscle and control blood glucose homeostasis. Rosemary extract (RE) has been reported to activate AMPK in hepatocytes and reduce blood glucose levels in vivo but its effects on skeletal muscle are not known. In the present study, we examined the effects of RE and the mechanism of regulation of glucose uptake in muscle cells. RE stimulated glucose uptake in L6 myotubes in a dose- and time-dependent manner. Maximum stimulation was seen with 5 μg/mL of RE for 4 h (184% ± 5.07% of control, p < 0.001), a response comparable to maximum insulin (207% ± 5.26%, p < 0.001) and metformin (216% ± 8.77%, p < 0.001) stimulation. RE did not affect insulin receptor substrate 1 and Akt phosphorylation but significantly increased AMPK and acetyl-CoA carboxylase phosphorylation. Furthermore, the RE-stimulated glucose uptake was significantly reduced by the AMPK inhibitor compound C, but remained unchanged by the PI3K inhibitor, wortmannin. RE did not affect GLUT4 or GLUT1 glucose transporter translocation in contrast with a significant translocation of both transporters seen with insulin or metformin treatment. Our study is the first to show a direct effect of RE on muscle cell glucose uptake by a mechanism that involves AMPK activation.

2018 ◽  
Vol 43 (12) ◽  
pp. 1307-1313 ◽  
Author(s):  
Tyler Barnes ◽  
Katie M. Di Sebastiano ◽  
Filip Vlavcheski ◽  
Joe Quadrilatero ◽  
Evangelia Litsa Tsiani ◽  
...  

Various in vivo studies have investigated the insulin response that is elicited when glutamate is elevated in circulation or in a given tissue; fewer studies have investigated the effects of glutamate on glucose uptake and handling. Glutamate ingestion in humans can attenuate rises in blood glucose following a carbohydrate load in the absence of increases in serum insulin concentrations. However, the underlying mechanisms have yet to be investigated. To elucidate the effects of glutamate on glucose handling in skeletal muscle tissue, differentiated rat L6 myocytes were treated with glutamate, and glucose uptake was assessed with the use of 2-[3H]-deoxy-d-glucose ([3H]-2-DG). Cells treated with 2 mmol/L glutamate experienced the greatest increase in [3H]-2-DG uptake relative to the control condition (177% ± 2% of control, P < 0.001) and the uptake was similar to that of metformin (184% ± 4%, P < 0.001). In line with these findings, differentiated glucose transporter 4 (GLUT4)-overexpressing myotubes treated with 2 mmol/L glutamate displayed significantly increased GLUT4 translocation when compared with the control condition (159% ± 8% of control, P < 0.001) and to an extent similar to that of insulin and metformin (181% ± 7% and 159% ± 12%, respectively). An AMP-activated protein kinase (AMPK) inhibitor (Compound C) abolished the glutamate-stimulated glucose uptake (98% ± 12% of control), and Western blotting revealed significantly elevated AMPK phosphorylation (278% ± 17% of control, P < 0.001) by glutamate. Our findings suggest that when muscle cells are exposed to increased glutamate concentrations, glucose uptake into these cells is augmented through AMPK activation, through mechanisms distinct from those of insulin and leucine.


Author(s):  
Hye Kyoung Sung ◽  
Patricia L. Mitchell ◽  
Sean Gross ◽  
Andre Marette ◽  
Gary Sweeney

Adiponectin is well established to mediate many beneficial metabolic effects, and this has stimulated great interest in development and validation of adiponectin receptor agonists as pharmaceutical tools. This study investigated the effects of ALY688, a peptide-based adiponectin receptor agonist, in rat L6 skeletal muscle cells. ALY688 significantly increased phosphorylation of several adiponectin downstream effectors, including AMPK, ACC and p38MAPK, assessed by immunoblotting and immunofluorescence microscopy. Temporal analysis using cells expressing an Akt biosensor demonstrated that ALY688 enhanced insulin sensitivity. This effect was associated with increased insulin-stimulated Akt and IRS-1 phosphorylation. The functional metabolic significance of these signaling effects was examined by measuring glucose uptake in myoblasts stably overexpressing the glucose transporter GLUT4. ALY688 treatment both increased glucose uptake itself and enhanced insulin-stimulated glucose uptake. In the model of high glucose/high insulin (HGHI)-induced insulin resistant cells, both temporal studies using the Akt biosensor as well as immunoblotting assessing Akt and IRS-1 phosphorylation indicated that ALY688 significantly reduced insulin resistance. Importantly, we observed that ALY688 administration to high-fat high sucrose fed mice also improve glucose handling, validating its efficacy in vivo. In summary, these data indicate that ALY688 activates adiponectin signaling pathways in skeletal muscle, leading to improved insulin sensitivity and beneficial metabolic effects.


Author(s):  
Chih-Chieh Chen ◽  
Chong-Kuei Lii ◽  
Chia-Wen Lo ◽  
Yi-Hsueh Lin ◽  
Ya-Chen Yang ◽  
...  

14-Deoxy-11,12-didehydroandrographolide (deAND), a bioactive component of Andrographis paniculata, has antidiabetic activity. AMP-activated protein kinase (AMPK) regulates glucose transport and ameliorates insulin resistance. The aim of the present study was to investigate whether activation of AMPK is involved in the mechanism by which deAND ameliorates insulin resistance in muscles. deAND amounts up to 40 [Formula: see text]M dose-dependently activated phosphorylation of AMPK[Formula: see text] and TBC1D1 in C2C12 myotubes. In addition, deAND significantly activated phosphorylation of LKB1 at 6 h after treatment, and this activation was maintained up to 48 h. deAND increased glucose uptake at 18 h after treatment, and this increase was time dependent up to 72 h. Compound C, an inhibitor of AMPK, suppressed deAND-induced phosphorylation of AMPK[Formula: see text] and TBC1D1 and reversed the effect on glucose uptake. In addition, the expression of GLUT4 mRNA and protein in C2C12 myotubes was up-regulated by deAND in a time-dependent manner. Promotion of GLUT4 gene transcription was verified by a pGL3-GLUT4 (837 bp) reporter assay. deAND also increased the nuclear translocation of MEF-2A and PPAR[Formula: see text]. After 16 weeks of feeding, the high-fat diet (HFD) inhibited phosphorylation of AMPK[Formula: see text] and TBC1D1 in skeletal muscle of obese C57BL/6JNarl mice, and deactivation of AMPK[Formula: see text] and TBC1D1 by the HFD was abolished by deAND supplementation. Supplementation with deAND significantly promoted membrane translocation of GLUT4 compared with the HFD group. Supplementation also significantly increased GLUT4 mRNA and protein expression in skeletal muscle compared with the HFD group. The hypoglycemic effects of deAND are likely associated with activation of the LKB1/AMPK[Formula: see text]/TBC1D1/GLUT4 signaling pathway and stimulation of MEF-2A- and PPAR[Formula: see text]-dependent GLUT4 gene expression, which account for the glucose uptake into skeletal muscle and lower blood glucose levels.


2007 ◽  
Vol 293 (4) ◽  
pp. E1062-E1068 ◽  
Author(s):  
Vitor A. Lira ◽  
Quinlyn A. Soltow ◽  
Jodi H. D. Long ◽  
Jenna L. Betters ◽  
Jeff E. Sellman ◽  
...  

Nitric oxide (NO) and 5′-AMP-activated protein kinase (AMPK) are involved in glucose transport and mitochondrial biogenesis in skeletal muscle. Here, we examined whether NO regulates the expression of the major glucose transporter in muscle (GLUT4) and whether it influences AMPK-induced upregulation of GLUT4. At low levels, the NO donor S-nitroso- N-penicillamine (SNAP, 1 and 10 μM) significantly increased GLUT4 mRNA (∼3-fold; P < 0.05) in L6 myotubes, and cotreatment with the AMPK inhibitor compound C ablated this effect. The cGMP analog 8-bromo-cGMP (8-Br-cGMP, 2 mM) increased GLUT4 mRNA by ∼50% ( P < 0.05). GLUT4 protein expression was elevated 40% by 2 days treatment with 8-Br-cGMP, whereas 6 days treatment with 10 μM SNAP increased GLUT4 expression by 65%. Cotreatment of cultures with the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one prevented the SNAP-induced increase in GLUT4 protein. SNAP (10 μM) also induced significant phosphorylation of α-AMPK and acetyl-CoA carboxylase and translocation of phosphorylated α-AMPK to the nucleus. Furthermore, L6 myotubes exposed to 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) for 16 h presented an approximately ninefold increase in GLUT4 mRNA, whereas cotreatment with the non-isoform-specific NOS inhibitor NG-nitro-l-arginine methyl ester, prevented ∼70% of this effect. In vivo, GLUT4 mRNA was increased 1.8-fold in the rat plantaris muscle 12 h after AICAR injection, and this induction was reduced by ∼50% in animals cotreated with the neuronal and inducible nitric oxide synthases selective inhibitor 1-(2-trifluoromethyl-phenyl)-imidazole. We conclude that, in skeletal muscle, NO increases GLUT4 expression via a cGMP- and AMPK-dependent mechanism. The data are consistent with a role for NO in the regulation of AMPK, possibly via control of cellular activity of AMPK kinases and/or AMPK phosphatases.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Ji Li ◽  
Yina Ma ◽  
Jonathan Bogan

Introduction: The adaptive metabolic regulation of glucose and fatty acid in the heart plays a critical role in limiting cardiac damage caused by ischemia and reperfusion (I/R). TUG (tether containing a UBX domain, for GLUT4) can be cleaved to mobilize glucose transporter GLUT4 from intracellular vesicles to the cell surface in skeletal muscle and adipose in response to insulin stimulation. The energy sensor AMP-activated protein kinase (AMPK) plays an important cardioprotective role in response to ischemic insults by modulating GLUT4 translocation. Hypothesis: TUG is one of the downstream targets of AMPK in the heart. TUG could be phosphorylated by ischemic AMPK and cleaved to dissociate with GLUT4 and increase GLUT4 translocation in the ischemic heart. Methods: In vivo regional ischemia by ligation of left anterior coronary artery and ex vivo isolated mouse heart perfusion Langendorff system were used to test the hypothesis. Results: Antithrombin (AT) is an endogenous AMPK agonist in the heart and used to define the role of TUG in regulating GLUT4 trafficking during ischemia and reperfusion in the heart. AT showed its cardioprotective function through recovering cardiac pumping function and activating AMPK. The results showed that AMPK activation by AT treatment was through LKB1 and Sesn2 complex. Furthermore, the ex vivo heart perfusion data demonstrated that AT administration significantly increase GLUT4 translocation, glucose uptake, glycolysis and glucose oxidation during ischemia and reperfusion (p<0.05 vs . vehicle). Moreover, AT treatment increased abundance of a TUG cleavage product (42 KD) in response to I/R. The TUG protein was clearly phosphorylated by activated AMPK in HL-1 cardiomyocytes. The in vivo myocardial ischemia results demonstrated that ischemic AMPK activation triggers TUG cleavage and significantly increases GLUT4 translocation to the cell surface. Moreover, an augmented interaction between AMPK and TUG was observed during ischemia. Conclusions: Cardiac AMPK activation stimulates TUG cleavage and causes the dissociation between TUG and GLUT4 in the intracellular vesicles. TUG is a critical mediator that modulates cardiac GLUT4 translocation to cell surface and enhances glucose uptake by AMPK signaling pathway.


2020 ◽  
Vol 318 (3) ◽  
pp. E330-E342 ◽  
Author(s):  
Yingying Yue ◽  
Chang Zhang ◽  
Xuejiao Zhang ◽  
Shitian Zhang ◽  
Qian Liu ◽  
...  

Contraction stimulates skeletal muscle glucose uptake predominantly through activation of AMP-activated protein kinase (AMPK) and Rac1. However, the molecular details of how contraction activates these signaling proteins are not clear. Recently, Axin1 has been shown to form a complex with AMPK and liver kinase B1 during glucose starvation-dependent activation of AMPK. Here, we demonstrate that electrical pulse-stimulated (EPS) contraction of C2C12 myotubes or treadmill exercise of C57BL/6 mice enhanced reciprocal coimmunoprecipitation of Axin1 and AMPK from myotube lysates or gastrocnemius muscle tissue. Interestingly, EPS or exercise upregulated total cellular Axin1 levels in an AMPK-dependent manner in C2C12 myotubes and gastrocnemius mouse muscle, respectively. Also, direct activation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleotide treatment of C2C12 myotubes or gastrocnemius muscle elevated Axin1 protein levels. On the other hand, siRNA-mediated Axin1 knockdown lessened activation of AMPK in contracted myotubes. Further, AMPK inhibition with compound C or siRNA-mediated knockdown of AMPK or Axin1 blocked contraction-induced GTP loading of Rac1, p21-activated kinase phosphorylation, and contraction-stimulated glucose uptake. In summary, our results suggest that an AMPK/Axin1-Rac1 signaling pathway mediates contraction-stimulated skeletal muscle glucose uptake.


2008 ◽  
Vol 33 (3) ◽  
pp. 333-340 ◽  
Author(s):  
Susanne Neschen ◽  
Yvonne Katterle ◽  
Julia Richter ◽  
Robert Augustin ◽  
Stephan Scherneck ◽  
...  

Uncoupling of oxidative phosphorylation represents a potential target for the treatment of hyperglycemia and insulin resistance in obesity and type 2 diabetes. The present study investigated whether the expression of uncoupling protein 1 in skeletal muscles of transgenic (mUCP1 TG) mice modulates insulin action in major insulin target tissues in vivo. Euglycemic-hyperinsulinemic clamps (17 pM·kg lean body mass−1·min−1) were performed in 9-mo-old hemizygous male mUCP1 TG mice and wild-type (WT) littermates matched for body composition. mUCP1 TG mice exhibited fasting hypoglycemia and hypoinsulinemia compared with WT mice, whereas fasting hepatic glucose production rates were comparable in both genotypes. mUCP1 TG mice were markedly more sensitive to insulin action compared with WT mice and displayed threefold higher glucose infusion rates, enhanced skeletal muscle and white adipose tissue glucose uptake, and whole body glycolysis rates. In the absence of alterations in plasma adiponectin concentrations, acceleration of insulin-stimulated glucose turnover in skeletal muscle of mUCP1 TG mice was accompanied by increased phosphorylated Akt-to-Akt and phosphorylated AMP-activated protein kinase (AMPK)-to-AMPK ratios compared with WT mice. UCP1-mediated uncoupling of oxidative phosphorylation in skeletal muscle was paralleled by AMPK activation and thereby stimulated insulin-mediated glucose uptake in skeletal muscle.


1998 ◽  
pp. 344-352 ◽  
Author(s):  
T Miyata ◽  
T Taguchi ◽  
M Uehara ◽  
S Isami ◽  
H Kishikawa ◽  
...  

Previously we demonstrated that bradykinin infusion could increase glucose uptake into dog peripheral tissues, and that bradykinin could potentiate insulin-induced glucose uptake through glucose transporter 4 (GLUT4) translocation in dog adipocytes. However, skeletal muscle is the predominant tissue for insulin-mediated glucose disposal. The aim of this study was to determine how bradykinin affected insulin-stimulated glucose uptake in dog skeletal muscle and myotubes transformed from rat L6 myoblasts. The bradykinin receptor binding studies revealed that dog skeletal muscle and rat L6 myoblasts possessed significant numbers of bradykinin receptors (Kd = 88 and 76 pmol/l, Bmax = 82.5 and 20 fmol/mg protein respectively). An RT-PCR (reverse transcriptase-polymerase chain reaction) amplification showed mRNA specific for bradykinin B2 receptor in both cells. Bradykinin significantly increased 2-deoxyglucose uptake in isolated muscle and L6 myoblasts in the presence of insulin (10(-7) mol/l) in a dose-dependent manner, but not in the absence of insulin. Bradykinin also enhanced insulin-stimulated GLUT4 translocation, and insulin-induced phosphorylation of insulin receptor beta subunit and insulin receptor substrate-1 (IRS-1) without affecting the binding affinities or numbers of cell surface insulin receptors in both cells. It is concluded that bradykinin could potentiate the insulin-induced glucose uptake through GLUT4 translocation in dog skeletal muscle and rat L6 myoblasts. This effect could be explained by the potency of bradykinin to upregulate the insulin receptor tyrosine kinase activity which stimulates phosphorylation of IRS-1, followed by an increase in GLUT4 translocation.


2003 ◽  
Vol 31 (6) ◽  
pp. 1165-1167 ◽  
Author(s):  
R.M. Mayers ◽  
R.J. Butlin ◽  
E. Kilgour ◽  
B. Leighton ◽  
D. Martin ◽  
...  

PDH (pyruvate dehydrogenase) is a key enzyme controlling the rate of glucose oxidation, and the availability of gluconeogenic precursors. Activation of PDH in skeletal muscle and liver may increase glucose uptake and reduce glucose production. This study describes the properties of AZD7545, a novel, small-molecule inhibitor of PDHK (PDH kinase). In the presence of PDHK2, AZD7545 increased PDH activity with an EC50 value of 5.2 nM. In rat hepatocytes, the rate of pyruvate oxidation was stimulated 2-fold (EC50 105 nM). A single dose of AZD7545 to Wistar rats increased the proportion of liver PDH in its active, dephosphorylated form in a dose-related manner from 24.7 to 70.3% at 30 mg/kg; and in skeletal muscle from 21.1 to 53.3%. A single dose of 10 mg/kg also significantly elevated muscle PDH activity in obese Zucker (fa/fa) rats. Obese, insulin-resistant, Zucker rats show elevated postprandial glucose levels compared with their lean counterparts (8.7 versus 6.1 mM at 12 weeks old). AZD7545 (10 mg/kg) twice daily for 7 days markedly improved the 24-h glucose profile, by eliminating the postprandial elevation in blood glucose. These results suggest that PDHK inhibitors may be beneficial agents for improving glucose control in the treatment of type 2 diabetes.


2014 ◽  
Vol 38 (4) ◽  
pp. 308-314 ◽  
Author(s):  
Kristin I. Stanford ◽  
Laurie J. Goodyear

Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial function, increases mitochondrial biogenesis, and increases the expression of glucose transporter proteins and numerous metabolic genes. This review focuses on the molecular mechanisms that mediate the effects of exercise to increase glucose uptake in skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document