scholarly journals Increased vascular permeability and severe renal tubular damage after ischemia-reperfusion injury in mice lacking adiponectin or T-cadherin

Author(s):  
Yuri Tsugawa-Shimizu ◽  
Yuya Fujishima ◽  
Shunbun Kita ◽  
Satoshi Minami ◽  
Taka-aki Sakaue ◽  
...  

Adiponectin (APN) is a circulating protein specifically produced by adipocytes. Native APN specifically binds to T-cadherin, a glycosylphosphatidylinositol-anchored protein, mediating the exosome-stimulating effects of APN in endothelial, muscle, and mesenchymal stem cells. It was previously reported that APN has beneficial effects on kidney diseases, but the role of T-cadherin has not been clarified yet. Here, our immunofluorescence study indicated the existence of both T-cadherin and APN protein in pericytes, subsets of tissue-resident mesenchymal stem/progenitor cells positive for PDGFRβ, surrounding peritubular capillaries. In an acute renal ischemia-reperfusion (I/R) model, T-cadherin-KO mice, similar to APN-KO mice, exhibited the more progressive phenotype of renal tubular damage and increased vascular permeability than wild-type mice. In addition, in response to I/R injury, the renal PDGFRβ-positive cell area increased in wild-type mice, but opposingly decreased both in Tcad-KO and APN-KO mice, suggesting severe pericyte loss. Mouse primary pericytes also expressed T-cadherin. APN promoted exosome secretion in a T-cadherin-dependent manner. Such exosome production from pericytes may play an important role in maintaining the capillary network and APN-mediated inhibition of renal tubular injury. In summary, our study suggested that APN protected the kidney in an acute renal injury model by binding to T-cadherin.

Biology Open ◽  
2021 ◽  
Author(s):  
Taro Miyagawa ◽  
Yasunori Iwata ◽  
Megumi Oshima ◽  
Hisayuki Ogura ◽  
Koichi Sato ◽  
...  

The full-length receptor for advanced glycation end products (RAGE) is a multiligand pattern recognition receptor. High-mobility group box 1 (HMGB1) is a RAGE ligand of damage-associated molecular patterns that elicits inflammatory reactions. The shedded isoform of RAGE and endogenous secretory RAGE (esRAGE), a splice variant, are soluble isoforms (sRAGE) that act as organ-protective decoys. However, the pathophysiologic roles of RAGE/sRAGE in acute kidney injury (AKI) remain unclear. We found that AKI was more severe, with enhanced renal tubular damage, macrophage infiltration, and fibrosis, in mice lacking both RAGE and sRAGE than in wild-type control mice. Using murine tubular epithelial cells (TECs), we demonstrated that hypoxia upregulated messenger RNA (mRNA) expression of HMGB1 and tumor necrosis factor α (TNF-α), whereas RAGE and esRAGE expressions were paradoxically decreased. Moreover, the addition of recombinant sRAGE canceled hypoxia-induced inflammation and promoted cell viability in cultured TECs. sRAGE administration prevented renal tubular damage in models of ischemia/reperfusion-induced AKI and of anti-glomerular basement membrane (anti-GBM) glomerulonephritis. These results suggest that sRAGE is a novel therapeutic option for AKI.


2020 ◽  
Vol 21 (12) ◽  
pp. 4545 ◽  
Author(s):  
Hiromasa Miyake ◽  
Katsuyuki Tanabe ◽  
Satoshi Tanimura ◽  
Yuri Nakashima ◽  
Tomoyo Morioka ◽  
...  

Acute kidney injury (AKI) has been increasingly recognized as a risk factor for transition to chronic kidney disease. Recent evidence suggests that endothelial damage in peritubular capillaries can accelerate the progression of renal injury. Vasohibin-2 (VASH2) is a novel proangiogenic factor that promotes tumor angiogenesis. However, the pathophysiological roles of VASH2 in kidney diseases remain unknown. In the present study, we examined the effects of VASH2 deficiency on the progression of ischemia–reperfusion (I/R) injury-induced AKI. I/R injury was induced by bilaterally clamping renal pedicles for 25 min in male wild-type (WT) and Vash2 homozygous knockout mice. Twenty-four hours later, I/R injury-induced renal dysfunction and tubular damage were more severe in VASH2-deficient mice than in WT mice, with more prominent neutrophil infiltration and peritubular capillary loss. After induction of I/R injury, VASH2 expression was markedly increased in injured renal tubules. These results suggest that VASH2 expression in renal tubular epithelial cells might be essential for alleviating I/R injury-induced AKI, probably through protecting peritubular capillaries and preventing inflammatory infiltration.


2020 ◽  
Vol 21 (17) ◽  
pp. 6212 ◽  
Author(s):  
Chien-Lin Lu ◽  
Chun-Hou Liao ◽  
Kuo-Cheng Lu ◽  
Ming-Chieh Ma

Indoxyl sulfate (IS) is accumulated during severe renal insufficiency and known for its nephrotoxic properties. Transient receptor potential vanilloid 1 (TRPV1) is present in the kidney and acts as a renal sensor. However, the mechanism underlying IS-mediated renal tubular damage in view of TRPV1 is lacking. Here, we demonstrated that TRPV1 was expressed in tubular cells of Lilly Laboratories cell-porcine kidney 1 (LLC-PK1) and Madin-Darby canine kidney cells (MDCK). IS treatment in both cells exhibited tubular damage with increased LDH release and reduced cell viability in dose- and time-dependent manners. MDCK, however, was more vulnerable to IS. We, therefore, investigated MDCK cells to explore a more detailed mechanism. Interestingly, IS-induced tubular damage was markedly attenuated in the presence of selective TRPV1 blockers. IS showed no effect on TRPV1 expression but significantly increased arachidonate 12-lipoxygenase (ALOX12) protein, mRNA expression, and 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE) amounts in a dose-dependent manner, indicating that the ALOX12/12(S)-HETE pathway induced TRPV1 hyperfunction in IS-mediated tubulotoxicity. Blockade of ALOX12 by cinnamyl-3,4-dihydroxy-α-cyanocinnamate or baicalein attenuated the effects of IS. Since aryl hydrocarbon receptor (AhR) activation after IS binding is crucial in mediating cell death, here, we found that the AhR blockade not only ameliorated tubular damage but also attenuated ALOX12 expression and 12(S)-HETE production caused by IS. The uremic toxic adsorbent AST-120, however, showed little effect on ALOX12 and 12(S)-HETE, as well as IS-induced cell damage. These results clearly indicated that IS activated AhR and then upregulated ALOX12, and this induced endovanilloid 12(S)-HETE synthesis and contributed to TRPV1 hyperfunction in IS-treated tubular cells. Further study on TRPV1 may attenuate kidney susceptibility to the functional loss of end-stage kidney disease via IS.


2008 ◽  
Vol 294 (4) ◽  
pp. F739-F747 ◽  
Author(s):  
Weiwei Wang ◽  
W. Brian Reeves ◽  
Ganesan Ramesh

Endogenous mechanisms exist to limit inflammation. One such molecule is netrin. This study examined the impact of ischemia-reperfusion (I/R) on netrin expression and the role of netrin in preventing renal inflammation and injury. All three isoforms of netrin (1, 3, and 4) are expressed in normal kidney. I/R significantly downregulated netrin-1 and -4 mRNA expression, whereas expression of netrin-3 was moderately upregulated at 24 h of reperfusion. The netrin receptor UNC5B mRNA increased at 3 h and but decreased at later time points. Expression of a second netrin receptor, DCC, was not altered significantly. I/R was associated with dramatic changes in netrin-1 protein abundance and localization. Netrin-1 protein levels increased between 3 and 24 h after reperfusion. Immunolocalization showed an interstitial distribution of netrin-1 in sham-operated kidneys which colocalized with Von Willebrand Factor suggesting the presence of netrin-1 in peritubular capillaries. After I/R, interstitial netrin-1 expression decreased and netrin-1 appeared in tubular epithelial cells. By 72 h after reperfusion, netrin-1 reappeared in the interstitium while tubular epithelial staining decreased significantly. Downregulation of netrin-1 in the interstitium corresponded with increased MCP-1 and IL-6 expression and infiltration of leukocytes into the reperfused kidney. Administration of recombinant netrin-1 significantly improved kidney function (blood urea nitrogen: 161 ± 7 vs. 104 ± 24 mg/dl, creatinine: 1.3 ± 0.07 vs. 0.75 ± 0.16 mg/dl, P < 0.05 at 24 h) and reduced tubular damage and leukocyte infiltration in the outer medulla. These results suggest that downregulation of netrin-1 in vascular endothelial cells may promote endothelial cell activation and infiltration of leukocytes into the kidney thereby enhancing tubular injury.


2009 ◽  
Vol 297 (5) ◽  
pp. F1273-F1287 ◽  
Author(s):  
Elke Hammerschmidt ◽  
Ivone Loeffler ◽  
Gunter Wolf

Renal ischemia and reperfusion injury leads to acute renal failure when proinflammatory and apoptotic processes in the kidney are activated. The increase in hypoxia-inducible transcription factor-α (HIF-α), an important transcription factor for several genes, can attenuate ischemic renal injury. We recently identified a novel WD-repeat protein designated Morg1 (MAPK organizer 1) that interacts with prolyl hydroxylase 3 (PHD3), an important enzyme involved in the regulation of HIF-1α and HIF-2α expression. While homozygous Morg1 −/− mice are embryonic lethal, heterozygous Morg1 +/− mice have a normal phenotype. We show here that Morg1 +/− were partially protected from renal ischemia-reperfusion injury compared with wild-type Morg1 +/+ animals. Morg1 +/− mice compared with wild-type animals revealed a stronger increase in HIF-1α and HIF-2α expression in the ischemic-reperfused kidney associated with enhanced serum erythropoietin levels. However, no significant expression of HIF-1α and HIF-2α was found in nonischemic kidneys without any difference between Morg1 +/− and Morg1 +/+ mice. Ischemic kidneys of Morg1 +/− mice expressed more erythropoietin mRNA than ischemic kidneys from wild-type animals. Renal ischemia in Morg1 +/− mice resulted in a decrease in renal inflammation and reduction of proinflammatory cytokines (MCP-1, IP-10, MIP-2) compared with wild-type mice. Furthermore, there was significantly less apoptosis and tubular damage in Morg1 +/− kidneys after ischemia-reperfusion, and this was also reflected in significantly improved renal function compared with wild-type. Thus Morg1 may be a novel therapeutic target to limit renal injury after ischemia-reperfusion.


2015 ◽  
Vol 36 (1) ◽  
pp. 285-298 ◽  
Author(s):  
Xuejing Guan ◽  
Yingying Qian ◽  
Yue Shen ◽  
Lulu Zhang ◽  
Yi Du ◽  
...  

Background/Aims: Autophagy is a dynamic catabolic process that maintains cellular homeostasis. Whether it plays a role in promoting cell survival or cell death in the process of renal ischemia/reperfusion (I/R) remains controversial, partly because renal autophagy is usually examined at a certain time point. Therefore, monitoring of the whole time course of autophagy and apoptosis may help better understand the role of autophagy in renal I/R. Methods: Autophagy and apoptosis were detected after mice were subjected to bilateral renal ischemia followed by 0-h to 7-day reperfusion, exposure of TCMK-1 cells to 24-h hypoxia, and 2 to 24-h reoxygenation. The effect of autophagy on apoptosis was assessed in the presence of autophagy inhibitor 3-methyladenine (3-MA) and autophagy activator rapamycin. Results: Earlier than apoptosis, autophagy increased from 2-h reperfusion, reached the maximum at day 2, and then began declining from day 3 when renal damage had nearly recovered to normal. Exposure to 24-h hypoxia induced autophagy markedly, but it decreased drastically after 4 and 8-h reoxygenation, which was accompanied with increased cell apoptosis. Inhibition of autophagy with 3-MA increased the apoptosis of renal tubular cells during I/R in vivo and hypoxia/reoxygenation (H/R) in vitro. In contrast, activation of autophagy by rapamycin significantly alleviated renal tissue damage and tubular cell apoptosis in the two models. Conclusion: Autophagy was induced in a time-dependent manner and occurred earlier than the onset of cell apoptosis as an early response that played a renoprotective role during renal I/R and cell H/R. Up-regulation of autophagy may prove to be a potential strategy for the treatment of acute kidney injury.


2013 ◽  
Vol 305 (4) ◽  
pp. F495-F509 ◽  
Author(s):  
Masayuki Ishihara ◽  
Madoka Urushido ◽  
Kazu Hamada ◽  
Tatsuki Matsumoto ◽  
Yoshiko Shimamura ◽  
...  

Autophagy is a cellular recycling process induced in response to many types of stress. However, little is known of the signaling pathways that regulate autophagy during acute kidney injury (AKI). Bcl-2/adenovirus E1B 19 kDa-interacting protein (BNIP)3 and sestrin-2 are the target proteins of hypoxia-inducible factor (HIF)-1α and p53, respectively. The aim of this study was to investigate the roles of BNIP3 and sestrin-2 in oxidative stress-induced autophagy during AKI. We used rat ischemia-reperfusion injury and cultured renal tubular (NRK-52E) cells as in vivo and in vitro models of AKI, respectively. Renal ischemia-reperfusion injury upregulated the expression of BNIP3 and sestrin-2 in the proximal tubules, as measured by immunohistochemical staining and Western blot analysis. In vitro, NRK-52E cells exposed to hypoxia showed increased expression of BNIP3 mRNA and protein in a HIF-1α-dependent manner. In contrast, sestrin-2 mRNA and protein expression were upregulated in a p53-dependent manner after exposure to oxidative stress (exogenous H2O2). NRK-52E cells stably transfected with a fusion protein between green fluorescent protein and light chain 3 were used to investigate autophagy. Overexpression of BNIP3 or sestrin-2 in these cells induced light chain 3 expression and formation of autophagosomes. Interestingly, BNIP3-induced autophagosomes were mainly localized to the mitochondria, suggesting that this protein selectively induces mitophagy. These observations demonstrate that autophagy is induced in renal tubules by at least two independent pathways involving p53-sestrin-2 and HIF-1α-BNIP3, which may be activated by different types of stress to protect the renal tubules during AKI.


2014 ◽  
Vol 306 (7) ◽  
pp. F724-F733 ◽  
Author(s):  
Christopher Y. C. Nguan ◽  
Qiunong Guan ◽  
Martin E. Gleave ◽  
Caigan Du

Renal repair begins soon after the kidney suffers ischemia-reperfusion injury (IRI); however, its molecular pathways are not fully understood. Clusterin (Clu) is a chaperone protein with cytoprotective functions in renal IRI. The aim of this study was to investigate the role of Clu in renal repair after IRI. IRI was induced in the left kidneys of wild-type (WT) C57BL/6J (B6) vs. Clu knockout (KO) B6 mice by clamping the renal pedicles for 28–45 min at the body temperature of 32°C. The renal repair was assessed by histology and confirmed by renal function. Gene expression was examined using PCR array. Here, we show that following IRI, renal tubular damage and Clu expression in WT kidneys were induced at day 1, reached the maximum at day 3, and significantly diminished at day 7 along with normal function, whereas the tubular damage in Clu KO kidneys steadily increased from initiation of insult to the end of the experiment, when renal failure occurred. Renal repair in WT kidneys was positively correlated with an increase in Ki67+ proliferative tubular cells and survival from IRI. The functions of Clu in renal repair and renal tubular cell proliferation in cultures were associated with upregulation of a panel of genes that could positively regulate cell cycle progression and DNA damage repair, which might promote cell proliferation but not involve cell migration. In conclusion, these data suggest that Clu is required for renal tissue regeneration in the kidney repair phase after IRI, which is associated with promotion of tubular cell proliferation.


2018 ◽  
Vol 29 (7) ◽  
pp. 1900-1916 ◽  
Author(s):  
Bing Yang ◽  
Shanshan Lan ◽  
Mélanie Dieudé ◽  
Jean-Paul Sabo-Vatasescu ◽  
Annie Karakeussian-Rimbaud ◽  
...  

Background Ischemia-reperfusion injury (IRI) is a major risk factor for chronic renal failure. Here, we characterize the different modes of programmed cell death in the tubular and microvascular compartments during the various stages of IRI-induced AKI, and their relative importance to renal fibrogenesis.Methods We performed unilateral renal artery clamping for 30 minutes and contralateral nephrectomy in wild-type mice (C57BL/6) or caspase-3−/− mice.Results Compared with their wild-type counterparts, caspase-3−/− mice in the early stage of AKI had high urine cystatin C levels, tubular injury scores, and serum creatinine levels. Electron microscopy revealed evidence of tubular epithelial cell necrosis in caspase-3−/− mice, and immunohistochemistry showed upregulation of the necroptosis marker receptor-interacting serine/threonine-protein kinase 3 (RIPK3) in renal cortical sections. Western blot analysis further demonstrated enhanced levels of phosphorylated RIPK3 in the kidneys of caspase-3−/− mice. In contrast, caspase-3−/− mice had less microvascular congestion and activation in the early and extension phases of AKI. In the long term (3 weeks after IRI), caspase-3−/− mice had reduced microvascular rarefaction and renal fibrosis, as well as decreased expression of α-smooth muscle actin and reduced collagen deposition within peritubular capillaries. Moreover, caspase-3−/− mice exhibited signs of reduced tubular ischemia, including lower tubular expression of hypoxia-inducible factor-1α and improved tubular injury scores.Conclusions These results establish the pivotal importance of caspase-3 in regulating microvascular endothelial cell apoptosis and renal fibrosis after IRI. These findings also demonstrate the predominant role of microvascular over tubular injury as a driver of progressive renal damage and fibrosis after IRI.


2018 ◽  
Vol 46 (04) ◽  
pp. 785-800 ◽  
Author(s):  
Ji Hun Park ◽  
Min Chol Kho ◽  
Hyun Cheol Oh ◽  
Youn Chul Kim ◽  
Jung Joo Yoon ◽  
...  

Renal ischemia-reperfusion injury (IRI), an important cause of acute kidney injury (AKI), causes increased renal tubular injury and microvascular inflammation. 1,[Formula: see text]2,[Formula: see text]3,[Formula: see text]4,[Formula: see text]6-penta-O-galloyl-[Formula: see text]-D-glucose (PGG) from Galla rhois has anticancer, anti-oxidation and angiogenesis effects. We examined protective effects of PGG on IRI-induced acute AKI. Clamping both renal arteries for 45[Formula: see text]min induced isechemia and then reperfusion. Treatment with PGG (10[Formula: see text]mg/kg/day and 50[Formula: see text]mg/kg/day for four days) significantly ameliorated urine volume, urine osmolality, creatinine clearance (Ccr) and blood urea nitrogen (BUN). In addition, PGG increased aquaporine 1/2/3, Na[Formula: see text]-K[Formula: see text]-ATPase and urea transporter (UT-B) and decreased ICAM-1, MCP-1, and HMGB-1 expression. In this histopathologic study, PGG improved glomerular and tubular damage. Immunohistochemistry results showed that PGG increased aquaporine 1/2, and Na[Formula: see text]-K[Formula: see text] ATPase and decreased ICAM-1 expression. These findings suggest that PGG ameliorates tubular injury including tubular dysfunction and microvascular inflammation in IRI-induced AKI rats.


Sign in / Sign up

Export Citation Format

Share Document