Does menarche mark a period of elevated resting metabolic rate?

2004 ◽  
Vol 286 (3) ◽  
pp. E456-E462 ◽  
Author(s):  
Jennifer L. Spadano ◽  
Linda G. Bandini ◽  
Aviva Must ◽  
Gerard E. Dallal ◽  
William H. Dietz

Resting metabolic rate (RMR) and body composition were measured in 44 initially nonoverweight girls at three time points relative to menarche: premenarche (Tanner stage 1 or 2), menarche (±6 mo), and 4 yr after menarche. Mean absolute RMR was 1,167, 1,418, and 1,347 kcal/day, respectively. Absolute RMR was statistically significantly higher at menarche than at 4 yr after menarche despite statistically significantly less fat-free mass (FFM) and fat mass (FM), suggesting an elevation in RMR around the time of menarche. The pattern of change in RMR, adjusted for FFM, log transformed FM, age, race, parental overweight, and two interactions (visit by parental overweight, parental overweight by FFM), was also considered. Adjusted RMR did not differ statistically between the visits for girls with two normal-weight parents. For girls with at least one overweight parent, adjusted RMR was statistically significantly lower 4 yr after menarche than at premenarche or menarche. Thus parental overweight may influence changes that occur in RMR during adolescence in girls.

1993 ◽  
Vol 75 (6) ◽  
pp. 2514-2520 ◽  
Author(s):  
P. J. Arciero ◽  
M. I. Goran ◽  
E. T. Poehlman

This study examined gender differences in resting metabolic rate (RMR) across a broad age spectrum after controlling for differences in body composition and aerobic fitness. Three hundred twenty-eight healthy men (17–80 yr) and 194 women (18–81 yr) volunteers were characterized for RMR, body composition, physical activity, peak oxygen consumption (peak VO2), anthropometrics, and energy intake. Measured RMR was 23% higher (P < 0.01) in men (1,740 +/- 194 kcal/day) than in women (1,348 +/- 125 kcal/day). Multiple regression analysis showed that 84% of individual variation in RMR was explained by fat-free mass, fat mass, peak VO2, and gender. After controlling for differences in fat-free mass, fat mass, and peak VO2, a lower RMR (3%; P < 0.01) persisted in women (1,563 +/- 153 kcal/day) compared with men (1,613 +/- 127 kcal/day). Adjusted RMR in premenopausal (P < 0.01) and postmenopausal (P < 0.05) women was lower than in men of a similar age. Our results support a lower RMR in women than in men that is independent of differences in body composition and aerobic fitness.


2003 ◽  
Vol 62 (2) ◽  
pp. 521-528 ◽  
Author(s):  
J. C. K. Wells

Body composition in children is of increasing interest within the contexts of childhood obesity, clinical management of patients and nutritional programming as a pathway to adult disease. Energy imbalance appears to be common in many disease states; however, body composition is not routinely measured in patients. Traditionally, clinical interest has focused on growth or nutritional status, whereas more recent studies have quantified fat mass and lean mass. The human body changes in proportions and chemical composition during childhood and adolescence. Most of the weight gain comprises lean mass rather than fat. In general, interest has focused on percentage fat, and less attention has been paid to the way in which lean mass varies within and between individuals. In the general population secular trends in BMI have been widely reported, indicating increasing levels of childhood obesity, which have been linked to reduced physical activity. However, lower activity levels may potentially lead not only to increased fatness, but also to reduced lean mass. This issue merits further investigation. Diseases have multiple effects on body composition and may influence fat-free mass and/or fat mass. In some diseases both components change in the same direction, whereas in other diseases, the changes are contradictory and may be concealed by relatively normal weight. Improved techniques are required for clinical evaluations. Both higher fatness and reduced lean mass may represent pathways to an increased risk of adult disease.


1990 ◽  
Vol 259 (2) ◽  
pp. E233-E238 ◽  
Author(s):  
N. K. Fukagawa ◽  
L. G. Bandini ◽  
J. B. Young

The relationship between fat-free mass (FFM) and resting metabolic rate (RMR) was compared in young men (n = 24; age 18-33 yr), old men (n = 24; 69-89 yr), and old women (n = 20; 67-75 yr). Body composition was assessed using anthropometry, bioelectrical impedance analysis (BIA), and isotope dilution with 18O-labeled water. RMR was measured at least twice using an open-circuit indirect calorimetry system with a ventilated hood. The results indicate that the different methods for assessing body composition vary substantially and should not be used interchangeably. Anthropometry was not adequate to assess group differences in body fatness, although skinfold measures may be appropriate for within-group comparisons. BIA correlated well with the isotope-dilution technique and may be a useful measure of FFM. Finally, RMR was lower in the old men than the young (1.04 +/- 0.02 vs. 1.24 +/- 0.03 kcal/min, P less than 0.001) and remained lower even when adjusted for FFM estimated by isotope dilution (P less than 0.001). RMR in the women was also lower (0.84 +/- 0.02 kcal/min), but in contrast to the difference between young and old men, RMR adjusted for FFM did not differ (P = 0.16) between old men and women. Therefore, it is clear that differences in FFM cannot fully account for the lower RMR in the old, suggesting that aging is associated with an alteration in tissue energy metabolism.


1989 ◽  
Vol 256 (5) ◽  
pp. E573-E579 ◽  
Author(s):  
K. R. Segal ◽  
I. Lacayanga ◽  
A. Dunaif ◽  
B. Gutin ◽  
F. X. Pi-Sunyer

To clarify further the independent relationships of body composition parameters to energy expenditure, resting metabolic rate (RMR) and postprandial thermogenesis were studied in four groups who were matched for absolute fat mass (study 1) and relative fatness (study 2). In study 1, five lean [group A, 15.4 +/- 0.6% (+/- SE) body fat] and five obese men (group B, 25.0 +/- 0.9% fat) were matched on body fat mass (13.0 +/- 0.9 vs. 14.4 +/- 0.8 kg, respectively). Fat-free mass (FFM) and total weight were greater for group A than B. RMR was measured for 3 h in the fasted state and after a 720-kcal mixed meal. RMR was greater for group A than B (1.38 +/- 0.08 vs. 1.14 +/- 0.04 kcal/min, P less than 0.05). The thermic effect of food, calculated as 3 h postprandial minus fasting RMR, was greater for group A than B (65 +/- 6 vs. 23 +/- 9 kcal/3 h; P less than 0.05). In study 2, two groups (n = 6 men/group) were matched for percent body fat (33 +/- 1% fat for both) but differed in lean, fat, and total weights: 50.8 +/- 3.1 kg FFM for the lighter (group C) vs. 68.0 +/- 2.8 kg FFM for the heavier (group D) group, P less than 0.05. RMR was lower for group C than D (1.17 +/- 0.06 vs. 1.33 +/- 0.04 kcal/min, P less than 0.05), but the thermic effect of food was not significantly different (31 +/- 3 vs. 20 +/- 6 kcal/3 h).(ABSTRACT TRUNCATED AT 250 WORDS)


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 478 ◽  
Author(s):  
Hamish Fernando ◽  
Jessica Zibellini ◽  
Rebecca Harris ◽  
Radhika Seimon ◽  
Amanda Sainsbury

Background: Ramadan involves one month of fasting from sunrise to sunset. In this meta-analysis, we aimed to determine the effect of Ramadan fasting on weight and body composition. Methods: In May 2018, we searched six databases for publications that measured weight and body composition before and after Ramadan, and that did not attempt to influence physical activity or diet. Results: Data were collected from 70 publications (90 comparison groups, 2947 participants). There was a significant positive correlation between starting body mass index and weight lost during the fasting period. Consistently, there was a significant reduction in fat percentage between pre-Ramadan and post-Ramadan in people with overweight or obesity (−1.46 (95% confidence interval: −2.57 to −0.35) %, p = 0.010), but not in those of normal weight (−0.41 (−1.45 to 0.63) %, p = 0.436). Loss of fat-free mass was also significant between pre-Ramadan and post-Ramadan, but was about 30% less than loss of absolute fat mass. At 2–5 weeks after the end of Ramadan, there was a return towards, or to, pre-Ramadan measurements in weight and body composition. Conclusions: Even with no advice on lifestyle changes, there are consistent—albeit transient—reductions in weight and fat mass with the Ramadan fast, especially in people with overweight or obesity.


2004 ◽  
Vol 58 (8) ◽  
pp. 1132-1141 ◽  
Author(s):  
J LaForgia ◽  
GE van der Ploeg ◽  
RT Withers ◽  
SM Gunn ◽  
AG Brooks ◽  
...  

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 526-526
Author(s):  
Rachel Silver ◽  
Sai Das ◽  
Michael Lowe ◽  
Susan Roberts

Abstract Objectives There is persistent controversy over the extent to which different components of energy expenditure disproportionately decrease after weight loss and contribute to weight regain through decreased energy requirements. We conducted a secondary analysis of the CALERIE I study to test the hypothesis that decreased resting metabolic rate (RMR) and energy expenditure for physical activity (EEPA) after a 6-month calorie restriction intervention would predict weight regain at 12 months, with a greater decrease in RMR than EEPA. Methods Participants (n = 46) received all food and energy-containing beverages for 6 months. Outcome measures included total energy expenditure by doubly labeled water, RMR by indirect calorimetry, and body composition by BOD POD. Predictions for RMR and EEPA were derived from baseline linear regression models including age, sex, fat mass, and fat free mass. Baseline regression coefficients were used to calculate the predicted RMR and EEPA at 6 months. Residuals were calculated as the difference between measured and predicted values and were adjusted for body weight. The presence of metabolic adaptation was evaluated by a paired t-test comparing measured and predicted RMR at 6 months. Differences between 6-month RMR and EEPA residuals were evaluated by the same method. Linear regression was used to assess the association between 6-month residuals and weight loss maintenance (% weight change, 6 to 12 months). Results Mean weight loss was 6.9% at 6 months with 2.1% regain from 6 to 12 months. No adaptation in RMR was observed at 6 months (mean residual: 19 kcal; 95% confidence interval: −9, 48; P = 0.18). However, significant adaptation was observed in EEPA (mean residual: −199 kcal; −126, −272; P &lt; 0.0001). In addition, the mean 6-month RMR residual was significantly greater than the mean 6-month EEPA residual (218 kcal; 133, 304; P &lt; 0.0001). There was no significant association between 6-month RMR or EEPA residuals and weight regain at 12 months (P = 0.56, 0.34). Conclusions There was no measurable decrease in RMR with weight loss after adjusting for changes in fat free mass and fat mass, but there was a decrease in EEPA. Changes in RMR and EEPA with weight loss over 6 months did not predict weight regain at 12 months. Funding Sources Jean Mayer USDA Human Nutrition Research Center on Aging Doctoral Scholarship; USDA agreement #8050–51000-105–01S


Sign in / Sign up

Export Citation Format

Share Document