Resting metabolic rate is lower in women than in men

1993 ◽  
Vol 75 (6) ◽  
pp. 2514-2520 ◽  
Author(s):  
P. J. Arciero ◽  
M. I. Goran ◽  
E. T. Poehlman

This study examined gender differences in resting metabolic rate (RMR) across a broad age spectrum after controlling for differences in body composition and aerobic fitness. Three hundred twenty-eight healthy men (17–80 yr) and 194 women (18–81 yr) volunteers were characterized for RMR, body composition, physical activity, peak oxygen consumption (peak VO2), anthropometrics, and energy intake. Measured RMR was 23% higher (P < 0.01) in men (1,740 +/- 194 kcal/day) than in women (1,348 +/- 125 kcal/day). Multiple regression analysis showed that 84% of individual variation in RMR was explained by fat-free mass, fat mass, peak VO2, and gender. After controlling for differences in fat-free mass, fat mass, and peak VO2, a lower RMR (3%; P < 0.01) persisted in women (1,563 +/- 153 kcal/day) compared with men (1,613 +/- 127 kcal/day). Adjusted RMR in premenopausal (P < 0.01) and postmenopausal (P < 0.05) women was lower than in men of a similar age. Our results support a lower RMR in women than in men that is independent of differences in body composition and aerobic fitness.

2004 ◽  
Vol 286 (3) ◽  
pp. E456-E462 ◽  
Author(s):  
Jennifer L. Spadano ◽  
Linda G. Bandini ◽  
Aviva Must ◽  
Gerard E. Dallal ◽  
William H. Dietz

Resting metabolic rate (RMR) and body composition were measured in 44 initially nonoverweight girls at three time points relative to menarche: premenarche (Tanner stage 1 or 2), menarche (±6 mo), and 4 yr after menarche. Mean absolute RMR was 1,167, 1,418, and 1,347 kcal/day, respectively. Absolute RMR was statistically significantly higher at menarche than at 4 yr after menarche despite statistically significantly less fat-free mass (FFM) and fat mass (FM), suggesting an elevation in RMR around the time of menarche. The pattern of change in RMR, adjusted for FFM, log transformed FM, age, race, parental overweight, and two interactions (visit by parental overweight, parental overweight by FFM), was also considered. Adjusted RMR did not differ statistically between the visits for girls with two normal-weight parents. For girls with at least one overweight parent, adjusted RMR was statistically significantly lower 4 yr after menarche than at premenarche or menarche. Thus parental overweight may influence changes that occur in RMR during adolescence in girls.


1990 ◽  
Vol 259 (2) ◽  
pp. E233-E238 ◽  
Author(s):  
N. K. Fukagawa ◽  
L. G. Bandini ◽  
J. B. Young

The relationship between fat-free mass (FFM) and resting metabolic rate (RMR) was compared in young men (n = 24; age 18-33 yr), old men (n = 24; 69-89 yr), and old women (n = 20; 67-75 yr). Body composition was assessed using anthropometry, bioelectrical impedance analysis (BIA), and isotope dilution with 18O-labeled water. RMR was measured at least twice using an open-circuit indirect calorimetry system with a ventilated hood. The results indicate that the different methods for assessing body composition vary substantially and should not be used interchangeably. Anthropometry was not adequate to assess group differences in body fatness, although skinfold measures may be appropriate for within-group comparisons. BIA correlated well with the isotope-dilution technique and may be a useful measure of FFM. Finally, RMR was lower in the old men than the young (1.04 +/- 0.02 vs. 1.24 +/- 0.03 kcal/min, P less than 0.001) and remained lower even when adjusted for FFM estimated by isotope dilution (P less than 0.001). RMR in the women was also lower (0.84 +/- 0.02 kcal/min), but in contrast to the difference between young and old men, RMR adjusted for FFM did not differ (P = 0.16) between old men and women. Therefore, it is clear that differences in FFM cannot fully account for the lower RMR in the old, suggesting that aging is associated with an alteration in tissue energy metabolism.


1994 ◽  
Vol 77 (2) ◽  
pp. 647-652 ◽  
Author(s):  
M. J. Toth ◽  
A. W. Gardner ◽  
P. A. Ades ◽  
E. T. Poehlman

We examined the contribution of variations in body composition and leisure time physical activity to the age-related decline in peak oxygen consumption (VO2) in men and women. Healthy males 17–80 yr old (n = 378) and females 18–81 yr old (n = 224) were characterized for peak VO2 from a treadmill test to exhaustion, fat-free mass and fat mass by underwater weighing, and leisure time physical activity. Peak VO2 showed a greater absolute decline (P < 0.05) with age in males (r = -0.70, slope = -0.034 l.min-1.yr-1; P < 0.01) than in females (r = -0.78, slope = -0.028 l.min-1.yr-1; P < 0.01). After statistically controlling for differences in fat-free mass and fat mass, the decline in peak VO2 was diminished in both sexes, although a greater rate of decline persisted in males (r = -0.47, slope = -0.016 l.min-1.yr-1; P < 0.01) than in females (r = -0.39, slope = -0.009 l.min-1.yr-1; P < 0.01). We found that the addition of leisure time physical activity (independent of body composition) to the regression model further attenuated the rate of decline in males (r = -0.40, slope = -0.013 l.min-1.yr-1; P < 0.01) but did not alter the age-related decline in peak VO2 in females (r = -0.39, slope = -0.009 l.min-1.yr-1; P < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 256 (5) ◽  
pp. E573-E579 ◽  
Author(s):  
K. R. Segal ◽  
I. Lacayanga ◽  
A. Dunaif ◽  
B. Gutin ◽  
F. X. Pi-Sunyer

To clarify further the independent relationships of body composition parameters to energy expenditure, resting metabolic rate (RMR) and postprandial thermogenesis were studied in four groups who were matched for absolute fat mass (study 1) and relative fatness (study 2). In study 1, five lean [group A, 15.4 +/- 0.6% (+/- SE) body fat] and five obese men (group B, 25.0 +/- 0.9% fat) were matched on body fat mass (13.0 +/- 0.9 vs. 14.4 +/- 0.8 kg, respectively). Fat-free mass (FFM) and total weight were greater for group A than B. RMR was measured for 3 h in the fasted state and after a 720-kcal mixed meal. RMR was greater for group A than B (1.38 +/- 0.08 vs. 1.14 +/- 0.04 kcal/min, P less than 0.05). The thermic effect of food, calculated as 3 h postprandial minus fasting RMR, was greater for group A than B (65 +/- 6 vs. 23 +/- 9 kcal/3 h; P less than 0.05). In study 2, two groups (n = 6 men/group) were matched for percent body fat (33 +/- 1% fat for both) but differed in lean, fat, and total weights: 50.8 +/- 3.1 kg FFM for the lighter (group C) vs. 68.0 +/- 2.8 kg FFM for the heavier (group D) group, P less than 0.05. RMR was lower for group C than D (1.17 +/- 0.06 vs. 1.33 +/- 0.04 kcal/min, P less than 0.05), but the thermic effect of food was not significantly different (31 +/- 3 vs. 20 +/- 6 kcal/3 h).(ABSTRACT TRUNCATED AT 250 WORDS)


2004 ◽  
Vol 58 (8) ◽  
pp. 1132-1141 ◽  
Author(s):  
J LaForgia ◽  
GE van der Ploeg ◽  
RT Withers ◽  
SM Gunn ◽  
AG Brooks ◽  
...  

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 526-526
Author(s):  
Rachel Silver ◽  
Sai Das ◽  
Michael Lowe ◽  
Susan Roberts

Abstract Objectives There is persistent controversy over the extent to which different components of energy expenditure disproportionately decrease after weight loss and contribute to weight regain through decreased energy requirements. We conducted a secondary analysis of the CALERIE I study to test the hypothesis that decreased resting metabolic rate (RMR) and energy expenditure for physical activity (EEPA) after a 6-month calorie restriction intervention would predict weight regain at 12 months, with a greater decrease in RMR than EEPA. Methods Participants (n = 46) received all food and energy-containing beverages for 6 months. Outcome measures included total energy expenditure by doubly labeled water, RMR by indirect calorimetry, and body composition by BOD POD. Predictions for RMR and EEPA were derived from baseline linear regression models including age, sex, fat mass, and fat free mass. Baseline regression coefficients were used to calculate the predicted RMR and EEPA at 6 months. Residuals were calculated as the difference between measured and predicted values and were adjusted for body weight. The presence of metabolic adaptation was evaluated by a paired t-test comparing measured and predicted RMR at 6 months. Differences between 6-month RMR and EEPA residuals were evaluated by the same method. Linear regression was used to assess the association between 6-month residuals and weight loss maintenance (% weight change, 6 to 12 months). Results Mean weight loss was 6.9% at 6 months with 2.1% regain from 6 to 12 months. No adaptation in RMR was observed at 6 months (mean residual: 19 kcal; 95% confidence interval: −9, 48; P = 0.18). However, significant adaptation was observed in EEPA (mean residual: −199 kcal; −126, −272; P &lt; 0.0001). In addition, the mean 6-month RMR residual was significantly greater than the mean 6-month EEPA residual (218 kcal; 133, 304; P &lt; 0.0001). There was no significant association between 6-month RMR or EEPA residuals and weight regain at 12 months (P = 0.56, 0.34). Conclusions There was no measurable decrease in RMR with weight loss after adjusting for changes in fat free mass and fat mass, but there was a decrease in EEPA. Changes in RMR and EEPA with weight loss over 6 months did not predict weight regain at 12 months. Funding Sources Jean Mayer USDA Human Nutrition Research Center on Aging Doctoral Scholarship; USDA agreement #8050–51000-105–01S


2021 ◽  
pp. 1-39
Author(s):  
Abbie E. Smith-Ryan ◽  
Gabrielle J. Brewer ◽  
Lacey M. Gould ◽  
Malia N.M. Blue ◽  
Katie R. Hirsch ◽  
...  

Abstract Understanding the effects of acute feeding on body composition and metabolic measures is essential to the translational component and practical application of measurement and clinical use. To investigate the influence of acute feeding on the validity of dual energy x-ray absorptiometry (DXA), a four-compartment model (4C), and indirect calorimetry metabolic outcomes, 39 healthy young adults (n=19 females; age: 21.8± 3.1 yrs, weight; 71.5 ± 10.0 kg) participated in a randomized cross-over study. Subjects were provided one of four randomized meals on separate occasions (high carbohydrate, high protein, ad libitum or fasted baseline) prior to body composition and metabolic assessments. Regardless of macronutrient content, acute feeding increased DXA percent body fat (%fat) for the total sample and females [average constant error (CE):-0.30%; total error (TE): 2.34%), although not significant (p=0.062); the error in males was minimal (CE: 0.11%; TE: 0.86%). DXA fat mass (CE: 0.26 kg; TE: 0.75 kg), lean mass (CE: 0.83 kg; TE: 1.23 kg) were not altered beyond measurement error for the total sample. 4C %fat was significantly impacted from all acute feedings (avg CE: 0.46%; TE: 3.7%). 4C fat mass (CE: 0.71 kg; TE: 3.38 kg) and fat-free mass (CE: 0.55 kg; TE: 3.05 kg) exceeded measurement error for the total sample. Resting metabolic rate was increased for each feeding condition (TE: 398.4 kcal/d). Standard pre-testing fasting guidelines may be important when evaluating DXA and 4C %fat, whereas additional DXA variables (FM, LM) may not be significantly impacted by an acute meal. Measuring body composition via DXA under less stringent pre-testing guidelines may be valid and increase feasibility of testing in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document