Metabolism of apoprotein B in cynomolgus monkey: evidence for independent production of low-density lipoprotein apoprotein B

1983 ◽  
Vol 244 (2) ◽  
pp. E196-E201
Author(s):  
I. J. Goldberg ◽  
N. A. Le ◽  
H. N. Ginsberg ◽  
J. R. Paterniti ◽  
W. V. Brown

The catabolism of very-low-density lipoprotein apoprotein B and its conversion to low-density lipoprotein was studied in five chow-fed cynomolgus monkeys following injection of radioiodinated homologous very-low-density lipoproteins. The mean (+/- SD) fractional catabolic rate of very-low-density lipoprotein apoprotein B was 0.97 +/- 0.20 h-1 and the mean (+/- SD) production rate was 0.76 +/- 0.20 mg X kg-1 X h-1. The percent of conversion of very-low-density lipoprotein apoprotein B to low-density lipoprotein ranged from 33 to 59%. In separate studies of low-density lipoprotein apoprotein B turnover performed using homologous radiolabeled low-density lipoprotein in five additional animals, the mean (+/- SD) fractional catabolic rate for low-density lipoprotein apoprotein B was 0.050 +/- 0.017 h-1 and the mean (+/- SD) apoprotein B production rate was 0.70 +/- 0.18 mg X kg-1 X h-1. Comparison of the total low-density lipoprotein apoprotein B production with that derived from very-low-density lipoprotein apoprotein B suggested that a large fraction of plasma low-density lipoprotein apoprotein B was derived from a source exclusive of circulating very-low-density lipoprotein apoprotein B. This was confirmed in two animals by simultaneous injection of radiolabeled very-low-density and low-density lipoproteins. Thus, a significant proportion of cynomolgus monkey low-density lipoproteins are produced either by direct hepatic secretion or by rapid conversion of lower-density lipoproteins before they appear in the peripheral circulation.

1997 ◽  
Vol 321 (2) ◽  
pp. 445-450 ◽  
Author(s):  
Miek C. JONG ◽  
Janine H. van REE ◽  
Vivian E. H. DAHLMANS ◽  
Rune R. FRANTS ◽  
Marten H. HOFKER ◽  
...  

The function of apolipoprotein (apo) C1 in vivo is not clearly defined. Because transgenic mice overexpressing human apoC1 show elevated triacylglycerol (TG) levels [Simonet, Bucay, Pitas, Lauer and Taylor (1991) J. Biol. Chem. 266, 8651Ő8654], an as yet unknown role for apoC1 in TG metabolism has been suggested. Here we investigated directly the effect of the complete absence of apoC1 on very-low-density lipoprotein (VLDL)-TG lipolysis, clearance and production, by performing studies with the previously generated apoC1-deficient mice. On a sucrose-rich, low fat/low cholesterol (LFC) diet, apoC1-deficient mice accumulate in their circulation VLDL particles, which contain relatively lower amounts of lipids when compared with VLDL isolated from control mice. Lipolysis assays in vitro on VLDL from apoC1-deficient and control mice showed no differences in apparent Km and Vmax values (0.27ŷ0.06 versus 0.24ŷ0.03 mmol of TG/litre and 0.40ŷ0.03 versus 0.36ŷ0.03 mmol of non-esterified fatty acid (NEFA)/min per litre respectively). To correct for potential differences in the size of the VLDL particles, the resulting Km values were also expressed relative to apoB concentration. Under these conditions apoC1-deficient VLDL displayed a lower, but not significant, Km value when compared with control VLDL (3.44ŷ0.71 versus 4.44ŷ0.52 mmol of TG2/g apoB per litre). VLDL turnover studies with autologous injections of [3H]TG-VLDL in vivo showed that the VLDL fractional catabolic rate (FCR) was decreased by up to 50% in the apoC1-deficient mice when compared with control mice (10.5ŷ3.4 versus 21.0ŷ1.2/h of pool TG). No significant differences between apoC1-deficient and control mice were observed in the hepatic VLDL production estimated by Triton WR139 injections (0.19ŷ0.02 versus 0.21ŷ0.05 mmol/h of TG per kg) and in the extra-hepatic lipolysis of VLDL-TG (4.99ŷ1.62 versus 3.46ŷ1.52/h of pool TG) in vivo. Furthermore, [125I]VLDLŐapoB turnover experiments in vivo also showed a 50% decrease in the FCR of VLDL in apoC1-deficient mice when compared with control mice on the LFC diet (1.1ŷ0.3 versus 2.1ŷ0.1/h of pool apoB). When mice were fed a very high fat/high cholesterol (HFC) diet, the VLDLŐapoB FCR was further decreased in apoC1-deficient mice (0.4ŷ0.1 versus 1.4ŷ0.4/h of pool apoB). We conclude that, in apoC1-deficient mice, the FCR of VLDL is reduced because of impaired uptake of VLDL remnants by hepatic receptors, whereas the production and lipolysis of VLDL-TG is not affected.


1981 ◽  
Vol 241 (5) ◽  
pp. E372-E377
Author(s):  
R. S. Kushwaha ◽  
W. R. Hazzard

To determine the metabolic mechanism of the hypolipidemic response to estrogen in cholesterol-fed rabbits, very low-density lipoprotein (VLDL) apolipoprotein B (apoB) turnover studies were conducted in cholesterol-fed animals with or without estrogen treatment. Autologous VLDL apoB had a more rapid fractional catabolic rate (FCR) in estrogen-treated than in untreated animals, but there was no difference in the radioactivity appearing in the intermediate-(IDL) and low- (LDL) density lipoproteins. Similar differences in the FCR were observed when isologous VLDL from donors in the opposite group was injected, suggesting that estrogen treatment in cholesterol-fed rabbits accelerated the catabolism of cholesterol- and apoE-rich lipoproteins by a mechanism that is not dependent on its conversion to LDL. Furthermore, VLDL apoB from normal untreated donor animals was catabolized more rapidly in the estrogen-treated animals, but most of the radioactivity appeared in LDL in both groups. These observations suggest that estrogen treatment of cholesterol-fed rabbits affected only the efficiency but not the completeness of catabolism of normal VLDL. Thus the catabolism of vLDL in cholesterol-fed animals treated with or without estrogen depended on the composition of VLDL injected and the pool size of plasma VLDL, which was reduced by estrogen treatment.


1990 ◽  
Vol 272 (3) ◽  
pp. 735-741 ◽  
Author(s):  
J C Holder ◽  
V A Zammit ◽  
D S Robinson

The removal from the blood and the uptake by the liver of injected very-low-density lipoprotein (VLDL) preparations that had been radiolabelled in their apoprotein and cholesteryl ester moieties was studied in lactating rats. Radiolabelled cholesteryl ester was removed from the blood and taken up by the liver more rapidly than sucrose-radiolabelled apoprotein. Near-maximum cholesteryl ester uptake by the liver occurred within 5 min of the injection of the VLDL. At this time, apoprotein B uptake by the liver was only about 25% of the maximum. Maximum uptake of the injected VLDL apoprotein B label was not achieved until at least 15 min after injection, by which time the total uptakes of cholesteryl ester and apoprotein B label were very similar. The results suggest that preferential uptake of the lipoprotein cholesteryl ester by the liver occurred before endocytosis of the entire lipoprotein complex. The fate of the injected VLDL cholesteryl ester after its uptake by the liver was also monitored. Radiolabel associated with the hepatic cholesteryl ester fraction fell steadily from its early maximum level, the rate of fall being faster and more extensive when the fatty acid, rather than the cholesterol, moiety of the ester was labelled. By 30 min after the injection of VLDL containing [3H]cholesteryl ester, over one-third of the injected label was already present as [3H]cholesterol in the liver. When VLDL containing cholesteryl [14C]oleate was injected, a substantial proportion (about 25%) of the injected radiolabelled fatty acid appeared in the hepatic triacylglycerol fraction within 60 min: very little was present in the plasma triacylglycerol fraction at this time.


1978 ◽  
Vol 176 (1) ◽  
pp. 169-174 ◽  
Author(s):  
P Thomopoulos ◽  
M Berthelier ◽  
D Lagrange ◽  
M J Chapman ◽  
M H Laudat

The effect of human plasma lipoproteins on lipogenesis from glucose has been studied in isolated rat adipocytes. The very-low-density lipoproteins increased lipogenesis specifically, whereas low-density lipoproteins and high-density lipoproteins were without effect. Such stimulation could be reproduced with partially delipidated very-low-density lipoproteins. Nod-esterified fatty acids and glycerol were also without effect. Pretreatment of the adipocytes with trypsin did not alter the effect of very-low-density lipoprotein. The presence of Ca2+ was required for the full activation of lipogenesis. The synthesis of acylglycerol fatty acids and of acylglycerol glycerol were equally increased. The effect of very-low-density lipoprotein was not additive to that of insulin. It is suggested that very-low-density lipoprotein may directly stimulate lipogenesis in fat-cells, particularly in states when the lipoproteins are present at high concentration in the circulation.


Sign in / Sign up

Export Citation Format

Share Document