Effects of corticotropin-releasing factor on food intake and brown adipose tissue thermogenesis in rats

1988 ◽  
Vol 255 (3) ◽  
pp. E255-E259 ◽  
Author(s):  
K. Arase ◽  
D. A. York ◽  
H. Shimizu ◽  
N. Shargill ◽  
G. A. Bray

Corticotropin-releasing factor (CRF) has been administered into the third ventricle of rats in acute and chronic experiments. Following a single 5-micrograms injection of CRF, there was an acute reduction in food intake at 30 and 60 min that was no longer significant at 3 h. Guanosine 5'-diphosphate (GDP) binding to mitochondria from interscapular brown adipose tissue (IBAT) of 21-h deprived rats was significantly increased 30 min after the acute infusion of 5 micrograms of CRF. Serum corticosterone was elevated in both groups but was significantly higher in the group treated with CRF. Serum glucose was unchanged. During a 7-day infusion of CRF (4.8 micrograms/day) into the third ventricle, the treated animals showed a slight, but significant, decrease in food intake but a progressive decline in body weight of 53 g over 7 days. Mitochondrial GDP binding was increased in the ad libitum-fed rats chronically treated with CRF. Serum corticosterone levels, although significantly higher than controls, were lower than following acute administration of CRF. These data show that CRF can acutely reduce food intake and increase sympathetic activity and that chronically it reduces body weight and may increase sympathetic activity without any consistent decrease in food intake.

1987 ◽  
Vol 252 (2) ◽  
pp. E202-E208 ◽  
Author(s):  
K. Tokuyama ◽  
J. Himms-Hagen

Adrenalectomy normalizes many abnormalities of the obese (ob/ob) mouse. The high corticosterone concentration in blood may account in part for development of obesity and other abnormalities in the ob/ob mouse. Our objective was to determine dose-response relationships for the effect of corticosterone on the obesity. Lean and ob/ob mice were adrenalectomized or sham-operated at 4.5 wk of age. Adrenalectomized mice received 100 mg implants of cholesterol containing corticosterone (0, 2, 5, 20, or 50 mg) at 8.5 wk of age and were killed at 10.5 wk of age. In ob/ob mice, but not in lean mice, low physiological levels of serum corticosterone (up to 10 micrograms/dl) markedly increased body weight gain, food intake, and serum insulin. They also increased white and brown adipose tissue weights and decreased brown adipose tissue mitochondrial GDP binding. Higher levels of corticosterone (12-22 micrograms/dl) increased body weight gain, white and brown adipose tissue weights, and serum insulin and suppressed brown adipose tissue mitochondrial GDP binding in lean mice also, although in most cases to a lesser extent than in ob/ob mice, but were still without effect on food intake. Only very high levels of corticosterone (approximately 30 micrograms/dl) increased food intake in lean mice. Hyperglycemia was induced in ob/ob, but not lean, mice only at concentrations of corticosterone greater than 17 micrograms/dl. Thermoregulation was unaffected by serum corticosterone at levels from 0 to 30 micrograms/dl in both ob/ob and lean mice. Thus the ob/ob mouse is excessively sensitive and responsive to an effect of physiological levels of corticosterone that results in hyperphagia, hyperinsulinemia, and increased weight gain.(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 256 (3) ◽  
pp. R751-R756 ◽  
Author(s):  
K. Arase ◽  
N. S. Shargill ◽  
G. A. Bray

Corticotropin-releasing factor (CRF) has been administered into the third ventricle of sham-operated and ventromedial hypothalamic (VMH)-lesioned rats in acute and chronic experiments. After a single 5-microgram injection of CRF, there was an acute reduction of food intake in both sham-operated and VMH-lesioned rats that persisted for 3 h. The effect was still present in the VMH-lesioned rats between 3 and 6 h but had dissipated in the sham-operated controls. Guanosine 5'-diphosphate (GDP) binding to mitochondria from interscapular brown adipose tissue was used as an index of thermogenic activity in this tissue. In 21-h food-deprived rats, GDP binding was significantly lower in VMH-lesioned than in sham-operated animals. Although the mean increase in sham-operated animals was increased, this was not significantly different from saline-injected controls. In the VMH-lesioned rats, however, CRF acutely increased GDP binding to values not different than those of the sham-operated controls. Serum corticosterone was significantly lower in the VMH-lesioned rats, but both groups showed a significant stimulation by CRF during a 7-day infusion of CRF (4.8 micrograms/day) into the third ventricle. Food intake was significantly depressed in the VMH-lesioned animals that received CRF, from values of 35 g/day to approximately 25 g/day. Body weight showed a slow steady decrease, having fallen by nearly 15 g at the end of the 7-day infusion period. In contrast the mean value in the VMH-lesioned controls had significantly higher in CRF-infused animals.(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 126 (5) ◽  
pp. 434-437 ◽  
Author(s):  
María Abelenda ◽  
Maria Paz Nava ◽  
Alberto Fernández ◽  
María Luisa Puerta

The participation of sexual hormones in body weight regulation is partly accomplished by altering food intake. Nonetheless, female sexual hormones also alter brown adipose tissue thermogenesis in females. This study was aimed to find out if male hormones could alter brown adipose tissue thermogenesis in male rats. Testosterone was administered by means of Silastic capsules in adult male rats acclimated either at 28°C (thermoneutrality) or at 6°C (cold), treatment lasting 15 days. Food intake and body weight gain were reduced by hormonal treatment. However, brown adipose tissue mass, protein content, mitochondrial mass and GDP-binding were unchanged at both environmental temperatures. Accordingly, testosterone participation in body weight regulation is thought to be carried out without altering brown adipose tissue thermogenesis. A reduction in the weight of the sex accessory glands was also observed after cold acclimation.


1986 ◽  
Vol 250 (3) ◽  
pp. R383-R388 ◽  
Author(s):  
J. F. McElroy ◽  
P. W. Mason ◽  
J. M. Hamilton ◽  
G. N. Wade

This experiment examined the effects of diet and photoperiod on food intake, body weight, and brown adipose tissue (BAT) activity in female Siberian hamsters (Phodopus sungorus sungorus). BAT function was assessed by measuring both the sympathetic nervous system activity of BAT [estimated by the rate of norepinephrine (NE) turnover] and BAT thermogenic activity (estimated by GDP binding to BAT mitochondria). Nineteen weeks of high-fat feeding in long photoperiod [16:8 light-dark cycle (LD)] caused a 20% increase in food intake but did not affect body weight. Both NE turnover rate and GDP binding in interscapular BAT (IBAT) were increased four- to eightfold relative to that from chow-fed controls. Thus it appears that in Siberian hamsters BAT can serve the same energy-dissipating function during diet-induced overeating previously established in rats and mice. Nineteen-week exposure to a short photoperiod (LD 8:16) produced a reduction in body weight but did not affect food intake. Both NE turnover rate and GDP binding in IBAT were increased two- to fourfold relative to that from long-photoperiod controls. Thus it appears that in Siberian hamsters the photoperiod-induced improvements in thermogenic capacity are mediated via the same mechanisms as are cold- or diet-induced thermogenesis.


1989 ◽  
Vol 257 (6) ◽  
pp. R1377-R1385 ◽  
Author(s):  
M. Egawa ◽  
H. Yoshimatsu ◽  
G. A. Bray

The effects on firing rate of sympathetic nerves to interscapular brown adipose tissue were measured after induction of intracellular glycopenia by peripheral or central administration of 2-deoxy-D-glucose (2-DG). Injection of 2-DG (250 mg/kg body wt) into the jugular vein rapidly suppressed the sympathetic activity, which declined 84% within 10 min after the injection. This suppression persisted for at least 40 min. Hyperglycemia did not affect the sympathetic activity but partially inhibited the suppressive effect of 2-DG injection. Acute vagotomy failed to block the suppressive effect of 2-DG. Injection of 2-DG (2.5 mg/rat) into the third cerebral ventricle suppressed the sympathetic activity. This suppression was followed by gradual recovery. Saline injection did not affect the sympathetic activity. We conclude that cellular glycopenia induced by injecting 2-DG peripherally or into the third cerebral ventricle suppresses the sympathetic activity to brown adipose tissue. The results are consistent with the hypothesis that an acute energy shortage decreases the thermogenesis in interscapular brown adipose tissue by suppressing sympathetic neural activation of this tissue.


2009 ◽  
Vol 68 (4) ◽  
pp. 401-407 ◽  
Author(s):  
Barbara Cannon ◽  
Jan Nedergaard

According to the adipostat hypothesis for body-weight control, alterations in body weight should always be compensated by adequate alterations in food intake and thermogenesis. Thus, increased thermogenesis should not be able to counteract obesity because food intake would be increased. However evidence is presented here that thermogenesis in different forms (through artificial uncouplers, exercise, cold exposure) may counteract obesity and is not always fully compensated by increased food intake. Correspondingly, a decreased capacity for metaboloregulatory thermogenesis (i.e. non-functional brown adipose tissue) may in itself lead to obesity. This is evident in mice and may be valid for human subjects, as a substantial proportion of adults possess brown adipose tissue, and those with less or without brown adipose tissue would seem to be more prone to obesity. Thus, increased thermogenesis may counteract obesity, without dietary intervention.


Sign in / Sign up

Export Citation Format

Share Document