Fetal placental vascular responses to prostacyclin after angiotensin II-induced vasoconstriction

1989 ◽  
Vol 257 (1) ◽  
pp. E102-E107
Author(s):  
V. M. Parisi ◽  
S. W. Walsh

The vasodilator prostacyclin is produced by many fetal tissues and may serve to protect umbilical placental blood flow. We hypothesized that prostacyclin could reverse fetoplacental vasoconstriction produced by angiotensin II (ANG II). Studies were done in eight unanesthetized near-term ovine fetuses. After a control period, ANG II was infused into the fetal inferior vena cava at a rate of 0.5 microgram/min for 40 min. Twenty minutes after starting the ANG II infusion, an infusion of prostacyclin at a rate of 5 micrograms/min was added to the ANG II infusion. Blood flows were measured by the radioactive microsphere technique. Blood flow measurements were made during the control period, 20 min after starting the ANG II infusion, and 20 min after adding prostacyclin to the ANG II infusion. ANG II produced significant fetal hypertension and renal, intestinal, and placental vasoconstriction. Placental vascular resistance rose from 0.14 +/- 0.01 to 0.18 +/- 0.01 mmHg.min.kg fetal wt.ml-1 during the ANG II infusion period (P less than 0.05). The addition of prostacyclin to the ANG II infusion resulted in a return to control values for fetal blood pressure and renal and intestinal resistance. However, placental vasoconstriction was not reversed by addition of prostacyclin as placental vascular resistance remained significantly elevated over the control value (0.17 +/- 0.01 mmHg.min.kg fetal wt.ml-1). Although unchanged by ANG II infusion, fetal pH decreased significantly during the ANG II plus prostacyclin infusion period. We conclude that ANG II causes fetal hypertension and renal and intestinal vasoconstriction, which are reversed by prostacyclin.(ABSTRACT TRUNCATED AT 250 WORDS)

1973 ◽  
Vol 15 (2) ◽  
pp. 128-134 ◽  
Author(s):  
Francis Robicsek ◽  
Walter P. Scott ◽  
Norris B. Harbold ◽  
Harry K. Daugherty ◽  
Donald C. Mullen

1990 ◽  
Vol 259 (2) ◽  
pp. H464-H472 ◽  
Author(s):  
T. Yoshimura ◽  
R. R. Magness ◽  
C. R. Rosenfeld

During ovine pregnancy the uteroplacental vasculature is less responsive to angiotensin II (ANG II)-induced vasoconstriction than the systemic vasculature, whereas responses to alpha-agonists are just the opposite. Comparisons of fetal systemic and placental vascular responses to these agents are not well described, nor have they been compared with maternal responses. We determined steady-state responses to fetal infusions (5-7 min) of ANG II (0.023-5.73 micrograms/min) and phenylephrine (PHEN, 0.031-7.64 micrograms/min), continuously monitoring mean arterial pressure (MAP), heart rate (HR), and umbilical blood flow (UmBF). Although both vasoconstrictors caused dose-dependent increases in MAP and umbilical vascular resistance (UmVR), responsiveness (delta MAP and delta UmVR) to ANG II (mol/min) was 35- to 60-fold greater than to PHEN. ANG II caused dose-dependent decreases in UmBF (2-48%); PHEN had minimal effects except at the highest dose, UmBF decreasing only 18%. Although patterns of fetal responses of MAP, UmBF, and UmVR to ANG II resembled maternal responses of MAP and uterine blood flow and uterine vascular resistance, the former were greatly attenuated. Similar observations were made with PHEN for UmBF and UmVR but not MAP. ANG II is a more potent fetal systemic and placental vasoconstrictor than PHEN; however, compared with those of the mother the responses are attenuated. Moreover, the fetoplacental vascular bed appears unresponsive to alpha-adrenergic stimulation, possibly reflecting a mechanism for maintaining UmBF when plasma catecholamines are elevated.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Koert A. de Waal

Central blood flow (CBF) measurements are measurements in and around the heart. It incorporates cardiac output, but also measurements of cardiac input and assessment of intra- and extracardiac shunts. CBF can be measured in the central circulation as right or left ventricular output (RVO or LVO) and/or as cardiac input measured at the superior vena cava (SVC flow). Assessment of shunts incorporates evaluation of the ductus arteriosus and the foramen ovale. This paper describes the methodology of CBF measurements in newborn infants. It provides a brief overview of the evolution of Doppler ultrasound blood flow measurements, basic principles of Doppler ultrasound, and an overview of all used methodology in the literature. A general guide for interpretation and normal values with suggested cutoffs of CBFs are provided for clinical use.


1994 ◽  
Vol 122 (2) ◽  
pp. 299-308 ◽  
Author(s):  
I. Ortigues ◽  
D. Durand ◽  
J. Lefaivre

SUMMARYThe objectives of this study were (i) to evaluate a new surgical procedure to catheterize hepatic vessels as well as the posterior aorta and vena cava, (ii) to test a modification of a downstream dilution technique in order to measure blood flows through splanchnic tissues and hindquarters in rapid succession, and (iii) to improve the reliability of splanchnic blood flow measurements using paraamino hippuric acid (PAH). Ten adult ewes were used. The transhepatic surgical approach used proved successful; it was relatively easy to set up and a good recovery of hepatic functions was obtained. The attempt to measure splanchnic and hindquarters blood flow in rapid succession by alternating the sites of PAH infusion was unsuccessful, probably because of transient modifications in infusion rates due to different blood pressures in veins and arteries. Indeed, arterial PAH concentrations changed with infusion site. Finally, a better reproducibility of splanchnic blood flow measurements was obtained in sheep, fed every 3 h, by infusing the required amount of PAH partly via the mesenteric vein and partly via a ruminal vein.


1989 ◽  
Vol 257 (1) ◽  
pp. H17-H24 ◽  
Author(s):  
C. R. Rosenfeld ◽  
R. P. Naden

The uteroplacental vasculature is more refractory to angiotensin II (ANG II) than the systemic vasculature as a whole. To ascertain the differences in responses between reproductive and nonreproductive tissues that account for this, we infused ANG II (0.573, 5.73, and 11.5 micrograms/min) in pregnant sheep (137 +/- 5 days of gestation) and monitored arterial pressure (MAP), heart rate, and uterine blood flow (UBF); cardiac output and regional blood flows were measured with radiolabeled microspheres. Dose-dependent changes in MAP, UBF, and systemic (SVR) and uterine (UVR) vascular resistance occurred (P less than 0.05); systemic responses exceeded uterine (P less than 0.05), except with 11.5 micrograms/min, when % delta UVR = % delta SVR, % delta UVR greater than % delta MAP, and UBF fell 29%. Although a dose-dependent rise in placental resistance occurred, blood flow was unaffected except at 11.5 micrograms ANG II/min, falling 16.8 +/- 3.5% (P = 0.059). In contrast, endometrial perfusion decreased 68 +/- 4.2 and 81 +/- 1.8% (P less than 0.01) with 5.73 and 11.5 micrograms ANG II/min, respectively. Myometrial responses were intermediate, thus placental flow increased from 75 to greater than 90% of total UBF. Adipose, renal, and adrenal glands were extremely sensitive to ANG II, with blood flows decreasing maximally at 0.573 micrograms/min (P less than 0.05). Maximum adipose vascular resistance occurred at 0.573 micrograms/min, greater than 400% (P less than 0.001), exceeding responses in all tissues (P less than 0.05). The placenta is less responsive to ANG II than other uterine and most nonreproductive tissues, resulting in preferential maintenance of uteroplacental perfusion and protecting the fetus from the effects of this vasoconstrictor.


1990 ◽  
Vol 259 (1) ◽  
pp. H197-H203 ◽  
Author(s):  
K. E. Clark ◽  
G. L. Irion ◽  
C. E. Mack

Although the uterine vascular responses to endogenous vasoactive substances have been extensively investigated in pregnant sheep, the fetal umbilical responses to angiotensin II (ANG II) and norepinephrine (NE) have not been well characterized. Twenty-five pregnant ewes between 105 and 115 days of gestation were anesthetized and instrumented for hemodynamic measurements, systemic fetal and maternal intravenous infusions, and local maternal uterine arterial infusions of ANG II and NE. Fetal and maternal arterial pressure and heart rate, maternal uterine blood flow (total of left and right middle uterine arteries), and fetoplacental blood flow (common umbilical artery) were measured during continuous infusions of ANG II or NE. Fetal infusions of ANG II (0.03–1.0 micrograms.min-1.kg estimated fetal body wt-1) increased fetal arterial blood pressure by as much as 44% over base-line values, decreased umbilical blood flow by as much as 63%, and increased umbilical vascular resistance by up to 345%. Fetal infusions of NE (0.1–3 micrograms.min-1.kg-1) increased fetal arterial pressure 42% and increased umbilical vascular resistance by up to 38% but did not significantly alter fetoplacental blood flow. No significant maternal changes were observed during fetal infusions. Maternal infusion of ANG II increased maternal arterial pressure by as much as 59% and significantly increased uterine vascular resistance at the two highest doses but significantly decreased uterine blood flow only at the highest dose (17%; P less than 0.05). Maternal infusions of NE increased arterial pressure by as much as 113%, decreased uterine blood flow by as much as 76%, and increased uterine vascular resistance 3- to 10-fold over the base-line value.(ABSTRACT TRUNCATED AT 250 WORDS)


1973 ◽  
Vol 177 (1) ◽  
pp. 63-65 ◽  
Author(s):  
STEVEN J. PHILLIPS ◽  
PETER GOODMAN ◽  
RICHARD GOLDFINE ◽  
LLOYD PALL ◽  
MELVYN RUBENFIRE ◽  
...  

1996 ◽  
Vol 271 (1) ◽  
pp. H222-H227 ◽  
Author(s):  
B. J. Roy ◽  
V. H. Pitts ◽  
M. I. Townsley

The effects of angiotensin II(ANG II) on pulmonary vascular resistance and microvascular permeability were studied in isolated, blood-perfused, ventilated canine lung lobes from control animals (n = 40) and animals with pacing-induced heart failure (n = 15). Conditioned dogs were paced (245 beats/min) for 30.6 +/- 0.9 (SE) days until left ventricular shortening fraction decreased by 56% (P < 0.05). Baseline pulmonary arterial resistance (Ra) (19.1 +/- 1.6 vs. 8.0 +/- 1.1 cmH2O.1(-1).min.100g) and venous resistance (Rv) (17.1 +/- 2.3 vs. 7.8 +/- 1.0 cmH2O.1(-1).min.100 g) were greater (P < 0.05) in the paced group compared with controls, respectively. Increments in Ra (delta Ra) and Rv(delta Rv) were measured after intra-arterial boluses of ANG II (1-10 micrograms). ANG II produced a dose-dependent response in delta Ra that was enhanced after pacing (P < 0.05). There was no effect on delta Rv in either group. At increased venous pressure (Pv = 20 cmH2O), the increments in delta Ra were significantly attenuated in both groups. In control lobes at low Pv, delta Ra and delta Rv both tended to decrease with increased lobar blood flow, suggesting that blood flow affects the pulmonary vascular response of ANG II. The baseline capillary filtration coefficient (Kf,c) was not different in the paced group compared with control, nor was there any effect of ANG II on Kf,c in the paced group. However, Kf,c did increase after ANG II in the control groups evaluated at either low or high Pv (P < 0.05). This difference in Kf,c was not seen if the experiment was done at increased Pv but without ANG II administration. We conclude that the pulmonary vasoconstrictor activity of ANG II is modestly enhanced in canine pacing-induced heart failure. Nonetheless, ANG II does not likely contribute to increased pulmonary vascular resistance in vivo in heart failure, since this effect was abolished at increased Pv. Finally, the absence of any effect of ANG II on pulmonary microvascular permeability in the paced group is suggestive of some adaptive remodeling of the capillary endothelial barrier.


Sign in / Sign up

Export Citation Format

Share Document