Parathyroid hormone induces hepatic production of bioactive interleukin-6 and its soluble receptor

2001 ◽  
Vol 280 (3) ◽  
pp. E405-E412 ◽  
Author(s):  
Mary Ann Mitnick ◽  
Andrew Grey ◽  
Urszula Masiukiewicz ◽  
Marcjanna Bartkiewicz ◽  
Laura Rios-Velez ◽  
...  

Interleukin-6 (IL-6) is an important mediator of parathyroid hormone (PTH)-induced bone resorption. Serum levels of IL-6 and its soluble receptor (IL-6sR) are regulated in part by PTH. The PTH/PTH-related protein type 1 receptor is highly expressed in the liver, and in the current study we investigated whether the liver produces IL-6 or IL-6sR in response to PTH. Perfusion of the isolated rat liver with PTH-(1-84) stimulated rapid, dose-dependent production of bioactive IL-6 and the IL-6sR. These effects were observed at near physiological concentrations of the hormone such that 1 pM PTH induced hepatic IL-6 production at a rate of ∼0.6 ng/min. In vitro, hepatocytes, hepatic endothelial cells, and Kupffer cells, but not hepatic stellate cells, were each found to produce both IL-6 and IL-6sR in response to higher (10 nM) concentrations of PTH. Our data suggest that hepatic-derived IL-6 and IL-6sR contribute to the increase in circulating levels of these cytokines induced by PTH in vivo and raise the possibility that PTH-induced, liver-derived IL-6 may exert endocrine effects on tissues such as bone.

Blood ◽  
1989 ◽  
Vol 74 (4) ◽  
pp. 1241-1244 ◽  
Author(s):  
T Ishibashi ◽  
H Kimura ◽  
Y Shikama ◽  
T Uchida ◽  
S Kariyone ◽  
...  

Abstract To determine the biologic activity of interleukin-6 (IL-6) on megakaryocytopoiesis and thrombocytopoiesis in vivo, the cytokine was administered intraperitoneally to mice every 12 hours at varying doses for five days or for varying time intervals, based on the kinetic analysis of IL-6 serum levels indicating the peak of 40 minutes following injection, with no detection at 150 minutes. A dose-response experiment showed that IL-6 increased platelet counts in a dose- dependent fashion at a plateau stimulation level of 5 micrograms. Administration of 5 micrograms of IL-6 reproducibly elevated platelet counts at five days by approximately 50% to 60% of increase. Moreover, a striking increase in megakaryocytic size in response to IL-6 was elicited by the treatment, but no change in megakaryocyte numbers; whereas IL-6 administration did not expand CFU-MK numbers. The in vivo studies in this manner had negligible effects on other hematologic parameters, with the minor exception of monocyte levels. These data show that IL-6 acts on maturational stages in megakaryocytopoiesis and promotes platelet production in vivo in mice, suggesting that IL-6 functions as thrombopoietin.


Blood ◽  
1992 ◽  
Vol 80 (1) ◽  
pp. 194-202 ◽  
Author(s):  
E Shacter ◽  
GK Arzadon ◽  
J Williams

Abstract Intraperitoneal (i.p.) injection of a mineral oil such as pristane induces a chronic inflammatory response in mice. This is characterized by a large influx of macrophages and other inflammatory cells into the peritoneal cavity for months after injection of the oil. By using the B9 cell bioassay, it was found that injection of pristane caused a marked and prolonged elevation of interleukin-6 (IL-6) levels in the peritoneal cavities of the mice. IL-6 was undetectable (less than 15 U/mL) in the peritoneal fluids of unprimed mice and during the first week after injecting pristane. From 4 to 20 weeks, the concentration of IL-6 increased to an apparent plateau with concentrations ranging from 200 to 2,000 U/mL. Increasing the dose of pristane did not substantially increase the peritoneal levels of IL-6 established at 20 weeks after pristane treatment. At later times (by day 250), the level decreased to 263 +/- 217 U/mL. However, mice that developed plasma cell tumors around day 300 showed high levels of IL-6 in the ascites fluid (650 to 2,400 U/mL). Serum levels of IL-6 were also elevated in pristane-primed mice but were substantially lower than those found in the peritoneal cavity. Chronic administration of the nonsteroidal anti- inflammatory drug indomethacin decreased the levels of IL-6 by 75% to 80%. Experiments performed in vitro showed that pristane-elicited macrophages secreted low levels of IL-6 constitutively and high levels of IL-6 in the presence of lipopolysaccharide. Both IL-6 and prostaglandin E2 production were inhibited by addition of indomethacin to macrophage cultures in vitro. Treatment of mice with pristane may provide a model system for studying the inflammatory pathways that control IL-6 levels in vivo. The relevance of these results to elucidation of the role of IL-6 in plasma cell tumorigenesis is discussed.


1991 ◽  
Vol 277 (3) ◽  
pp. 863-868 ◽  
Author(s):  
D Sömjen ◽  
K D Schlüter ◽  
E Wingender ◽  
H Mayer ◽  
A M Kaye

We have found, in previous studies in vitro using skeletal derived cell cultures, that mid-region fragments of human parathyroid hormone (hPTH) stimulate [3H]thymidine incorporation into DNA and increase the specific activity of the brain-type isoenzyme of creatine kinase (CK). These changes occurred without an increase in cyclic AMP formation which is linked to bone resorption. In this study, we found that the mid-region fragment hPTH-(28-48) stimulated CK activity in diaphysis, epiphysis and kidney in a time- and dose-dependent manner, parallel to the effects of the whole molecule bovine (b)PTH-(1-84) and the fully active fragment hPTH-(1-34). The increase caused by hPTH-(28-48) at a dose of 1.25 micrograms/rat was not less than the 2-fold increase caused by a roughly equimolar concentration bPTH-(1-84). A significant increase was reached at 1 h after intraperitoneal injection in all cases. All three sequences of PTH caused an increase in [3H]thymidine incorporation into DNA in diaphysis and epiphysis, but not in kidney, 24 h after injection. A fragment further towards the C-terminal, hPTH-(34-47), was inactive compared with an equimolar concentration of the fragment hPTH-(25-39), which stimulated both CK activity and DNA synthesis. These results in vivo are in line with previous findings in vitro; they provide further support for the suggestion that mid-region fragments of the PTH molecule could be used to induce bone formation without incurring the deleterious effect of bone resorption.


2021 ◽  
Vol 7 (3) ◽  
pp. 39
Author(s):  
Stanislovas S. Jankauskas ◽  
Jessica Gambardella ◽  
Celestino Sardu ◽  
Angela Lombardi ◽  
Gaetano Santulli

Substantial evidence indicates that microRNA-155 (miR-155) plays a crucial role in the pathogenesis of diabetes mellitus (DM) and its complications. A number of clinical studies reported low serum levels of miR-155 in patients with type 2 diabetes (T2D). Preclinical studies revealed that miR-155 partakes in the phenotypic switch of cells within the islets of Langerhans under metabolic stress. Moreover, miR-155 was shown to regulate insulin sensitivity in liver, adipose tissue, and skeletal muscle. Dysregulation of miR-155 expression was also shown to predict the development of nephropathy, neuropathy, and retinopathy in DM. Here, we systematically describe the reports investigating the role of miR-155 in DM and its complications. We also discuss the recent results from in vivo and in vitro models of type 1 diabetes (T1D) and T2D, discussing the differences between clinical and preclinical studies and shedding light on the molecular pathways mediated by miR-155 in different tissues affected by DM.


Blood ◽  
1989 ◽  
Vol 74 (4) ◽  
pp. 1241-1244 ◽  
Author(s):  
T Ishibashi ◽  
H Kimura ◽  
Y Shikama ◽  
T Uchida ◽  
S Kariyone ◽  
...  

To determine the biologic activity of interleukin-6 (IL-6) on megakaryocytopoiesis and thrombocytopoiesis in vivo, the cytokine was administered intraperitoneally to mice every 12 hours at varying doses for five days or for varying time intervals, based on the kinetic analysis of IL-6 serum levels indicating the peak of 40 minutes following injection, with no detection at 150 minutes. A dose-response experiment showed that IL-6 increased platelet counts in a dose- dependent fashion at a plateau stimulation level of 5 micrograms. Administration of 5 micrograms of IL-6 reproducibly elevated platelet counts at five days by approximately 50% to 60% of increase. Moreover, a striking increase in megakaryocytic size in response to IL-6 was elicited by the treatment, but no change in megakaryocyte numbers; whereas IL-6 administration did not expand CFU-MK numbers. The in vivo studies in this manner had negligible effects on other hematologic parameters, with the minor exception of monocyte levels. These data show that IL-6 acts on maturational stages in megakaryocytopoiesis and promotes platelet production in vivo in mice, suggesting that IL-6 functions as thrombopoietin.


2000 ◽  
Vol 44 (5) ◽  
pp. 1276-1283 ◽  
Author(s):  
Robert C. Tam ◽  
Kanda Ramasamy ◽  
Josie Bard ◽  
Bharati Pai ◽  
Charmaine Lim ◽  
...  

ABSTRACT The demonstrated utility of the nucleoside analog ribavirin in the treatment of certain viral diseases can be ascribed to its multiple distinct properties. These properties may vary in relative importance in differing viral disease conditions and include the direct inhibition of viral replication, the promotion of T-cell-mediated immune responses via an enhanced type 1 cytokine response, and a reduction of circulating alanine aminotransferase (ALT) levels associated with hepatic injury. Ribavirin also has certain known toxicities, including the induction of anemia upon chronic administration. To determine if all these properties are linked, we compared thed-nucleoside ribavirin to its l-enantiomer (ICN 17261) with regard to these properties. Strong similarities were seen for these two compounds with respect to induction of type 1 cytokine bias in vitro, enhancement of type 1 cytokine responses in vivo, and the reduction of serum ALT levels in a murine hepatitis model. In contrast, ICN 17261 had no in vitro antiviral activity against a panel of RNA and DNA viruses, while ribavirin exhibited its characteristic activity profile. Importantly, the preliminary in vivo toxicology profile of ICN 17261 is significantly more favorable than that of ribavirin. Administration of 180 mg of ICN 17261 per kg of body weight to rats by oral gavage for 4 weeks generated substantial serum levels of drug but no observable clinical pathology, whereas equivalent doses of ribavirin induced a significant anemia and leukopenia. Thus, structural modification of ribavirin can dissociate its immunomodulatory properties from its antiviral and toxicologic properties, resulting in a compound (ICN 17261) with interesting therapeutic potential.


Blood ◽  
1998 ◽  
Vol 91 (9) ◽  
pp. 3308-3314 ◽  
Author(s):  
Xue-Jie Wang ◽  
Tetsuya Taga ◽  
Kanji Yoshida ◽  
Mikiyoshi Saito ◽  
Tadamitsu Kishimoto ◽  
...  

gp130 is a common signal-transducing receptor component for the interleukin-6 (IL-6) family of cytokines. To investigate the expression of gp130 in T-cell subsets and its regulation, anti-murine gp130 monoclonal antibody (MoAb) was used for flow cytometric analysis. In normal mice, gp130 was differentially expressed in thymocyte and splenic T-cell subpopulations defined by CD4/CD8 expression. In aged MRL/lpr mice, although gp130 expression was detectable in splenic CD4+ or CD8+ T cells, gp130 expression was significantly downregulated. Because serum levels of IL-6 and soluble IL-6 receptor (sIL-6R) are elevated in these mice, we examined the possibility that the downregulation of gp130 expression on splenic T cells might be produced in response to continuous activation of gp130 by high levels of serum IL-6. In transgenic mice overexpressing IL-6, gp130 expression in the splenic T cells was significantly decreased. After stimulation with IL-6 in vitro, the level of gp130 on CD4+ or CD8+ splenic T cells from normal mice was significantly decreased. These results suggest that the expression of gp130 in splenic T cells could be downregulated by the IL-6 stimulation under physiological or pathological circumstances.


Blood ◽  
1992 ◽  
Vol 80 (1) ◽  
pp. 194-202
Author(s):  
E Shacter ◽  
GK Arzadon ◽  
J Williams

Intraperitoneal (i.p.) injection of a mineral oil such as pristane induces a chronic inflammatory response in mice. This is characterized by a large influx of macrophages and other inflammatory cells into the peritoneal cavity for months after injection of the oil. By using the B9 cell bioassay, it was found that injection of pristane caused a marked and prolonged elevation of interleukin-6 (IL-6) levels in the peritoneal cavities of the mice. IL-6 was undetectable (less than 15 U/mL) in the peritoneal fluids of unprimed mice and during the first week after injecting pristane. From 4 to 20 weeks, the concentration of IL-6 increased to an apparent plateau with concentrations ranging from 200 to 2,000 U/mL. Increasing the dose of pristane did not substantially increase the peritoneal levels of IL-6 established at 20 weeks after pristane treatment. At later times (by day 250), the level decreased to 263 +/- 217 U/mL. However, mice that developed plasma cell tumors around day 300 showed high levels of IL-6 in the ascites fluid (650 to 2,400 U/mL). Serum levels of IL-6 were also elevated in pristane-primed mice but were substantially lower than those found in the peritoneal cavity. Chronic administration of the nonsteroidal anti- inflammatory drug indomethacin decreased the levels of IL-6 by 75% to 80%. Experiments performed in vitro showed that pristane-elicited macrophages secreted low levels of IL-6 constitutively and high levels of IL-6 in the presence of lipopolysaccharide. Both IL-6 and prostaglandin E2 production were inhibited by addition of indomethacin to macrophage cultures in vitro. Treatment of mice with pristane may provide a model system for studying the inflammatory pathways that control IL-6 levels in vivo. The relevance of these results to elucidation of the role of IL-6 in plasma cell tumorigenesis is discussed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Charlotte M. Flynn ◽  
Yvonne Garbers ◽  
Stefan Düsterhöft ◽  
Rielana Wichert ◽  
Juliane Lokau ◽  
...  

AbstractThe cytokine interleukin-6 (IL-6) fulfills its pleiotropic functions via different modes of signaling. Regenerative and anti-inflammatory activities are mediated via classic signaling, in which IL-6 binds to the membrane-bound IL-6 receptor (IL-6R). For IL-6 trans-signaling, which accounts for the pro-inflammatory properties of the cytokine, IL-6 activates its target cells via soluble forms of the IL-6R (sIL-6R). We have previously shown that the majority of sIL-6R in human serum originates from proteolytic cleavage and mapped the cleavage site of the IL-6R. The cleavage occurs between Pro-355 and Val-356, which is the same cleavage site that the metalloprotease ADAM17 uses in vitro. However, sIL-6R serum levels are unchanged in hypomorphic ADAM17ex/ex mice, making the involvement of ADAM17 questionable. In order to identify other proteases that could be relevant for sIL-6R generation in vivo, we perform a screening approach based on the known cleavage site. We identify several candidate proteases and characterize the cysteine protease cathepsin S (CTSS) in detail. We show that CTSS is able to cleave the IL-6R in vitro and that the released sIL-6R is biologically active and can induce IL-6 trans-signaling. However, CTSS does not use the Pro-355/Val-356 cleavage site, and sIL-6R serum levels are not altered in Ctss−/− mice. In conclusion, we identify a novel protease of the IL-6R that can induce IL-6 trans-signaling, but does not contribute to steady-state sIL-6R serum levels.


Endocrinology ◽  
2000 ◽  
Vol 141 (7) ◽  
pp. 2526-2531 ◽  
Author(s):  
Urszula S. Masiukiewicz ◽  
MaryAnn Mitnick ◽  
Andrew B. Grey ◽  
Karl L. Insogna

Sign in / Sign up

Export Citation Format

Share Document