scholarly journals Interleukin-6 is a potent thrombopoietic factor in vivo in mice

Blood ◽  
1989 ◽  
Vol 74 (4) ◽  
pp. 1241-1244 ◽  
Author(s):  
T Ishibashi ◽  
H Kimura ◽  
Y Shikama ◽  
T Uchida ◽  
S Kariyone ◽  
...  

Abstract To determine the biologic activity of interleukin-6 (IL-6) on megakaryocytopoiesis and thrombocytopoiesis in vivo, the cytokine was administered intraperitoneally to mice every 12 hours at varying doses for five days or for varying time intervals, based on the kinetic analysis of IL-6 serum levels indicating the peak of 40 minutes following injection, with no detection at 150 minutes. A dose-response experiment showed that IL-6 increased platelet counts in a dose- dependent fashion at a plateau stimulation level of 5 micrograms. Administration of 5 micrograms of IL-6 reproducibly elevated platelet counts at five days by approximately 50% to 60% of increase. Moreover, a striking increase in megakaryocytic size in response to IL-6 was elicited by the treatment, but no change in megakaryocyte numbers; whereas IL-6 administration did not expand CFU-MK numbers. The in vivo studies in this manner had negligible effects on other hematologic parameters, with the minor exception of monocyte levels. These data show that IL-6 acts on maturational stages in megakaryocytopoiesis and promotes platelet production in vivo in mice, suggesting that IL-6 functions as thrombopoietin.

Blood ◽  
1989 ◽  
Vol 74 (4) ◽  
pp. 1241-1244 ◽  
Author(s):  
T Ishibashi ◽  
H Kimura ◽  
Y Shikama ◽  
T Uchida ◽  
S Kariyone ◽  
...  

To determine the biologic activity of interleukin-6 (IL-6) on megakaryocytopoiesis and thrombocytopoiesis in vivo, the cytokine was administered intraperitoneally to mice every 12 hours at varying doses for five days or for varying time intervals, based on the kinetic analysis of IL-6 serum levels indicating the peak of 40 minutes following injection, with no detection at 150 minutes. A dose-response experiment showed that IL-6 increased platelet counts in a dose- dependent fashion at a plateau stimulation level of 5 micrograms. Administration of 5 micrograms of IL-6 reproducibly elevated platelet counts at five days by approximately 50% to 60% of increase. Moreover, a striking increase in megakaryocytic size in response to IL-6 was elicited by the treatment, but no change in megakaryocyte numbers; whereas IL-6 administration did not expand CFU-MK numbers. The in vivo studies in this manner had negligible effects on other hematologic parameters, with the minor exception of monocyte levels. These data show that IL-6 acts on maturational stages in megakaryocytopoiesis and promotes platelet production in vivo in mice, suggesting that IL-6 functions as thrombopoietin.


2001 ◽  
Vol 280 (3) ◽  
pp. E405-E412 ◽  
Author(s):  
Mary Ann Mitnick ◽  
Andrew Grey ◽  
Urszula Masiukiewicz ◽  
Marcjanna Bartkiewicz ◽  
Laura Rios-Velez ◽  
...  

Interleukin-6 (IL-6) is an important mediator of parathyroid hormone (PTH)-induced bone resorption. Serum levels of IL-6 and its soluble receptor (IL-6sR) are regulated in part by PTH. The PTH/PTH-related protein type 1 receptor is highly expressed in the liver, and in the current study we investigated whether the liver produces IL-6 or IL-6sR in response to PTH. Perfusion of the isolated rat liver with PTH-(1-84) stimulated rapid, dose-dependent production of bioactive IL-6 and the IL-6sR. These effects were observed at near physiological concentrations of the hormone such that 1 pM PTH induced hepatic IL-6 production at a rate of ∼0.6 ng/min. In vitro, hepatocytes, hepatic endothelial cells, and Kupffer cells, but not hepatic stellate cells, were each found to produce both IL-6 and IL-6sR in response to higher (10 nM) concentrations of PTH. Our data suggest that hepatic-derived IL-6 and IL-6sR contribute to the increase in circulating levels of these cytokines induced by PTH in vivo and raise the possibility that PTH-induced, liver-derived IL-6 may exert endocrine effects on tissues such as bone.


1995 ◽  
Vol 73 (05) ◽  
pp. 805-811 ◽  
Author(s):  
Yasuo Takahashi ◽  
Yoshitaka Hosaka ◽  
Hiromi Niina ◽  
Katsuaki Nagasawa ◽  
Masaaki Naotsuka ◽  
...  

SummaryWe examined the anticoagulant activity of two major molecules of soluble thrombomodulin purified from human urine. The apparent molecular weights of these urinary thrombomodulins (UTMs) were 72,000 and 79,000, respectively. Both UTMs showed more potent cofactor activity for protein C activation [specific activity >5,000 thrombomodulin units (TMU)/mg] than human placental thrombomodulin (2,180 TMU/mg) and rabbit lung thrombomodulin (1,980 TMU/mg). The UTMs prolonged thrombin-induced fibrinogen clotting time (>1 TMU/ml), APTT (>5 TMU/ml), TT (>5 TMU/ml) and PT (>40 TMU/ml) in a dose-dependent fashion. These effects appeared in the concentration range of soluble thrombomodulins present in human plasma and urine. In the rat DIC model induced by thromboplastin, administration of UTMs by infusion (300-3,000 TMU/kg) restored the hematological abnormalities derived from DIC in a dose-dependent fashion. These results demonstrate that UTMs exhibit potent anticoagulant and antithrombotic activities, and could play a physiologically important role in microcirculation.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Nilutpal Sharma Bora ◽  
Partha Sarathi Bairy ◽  
Abdus Salam ◽  
Bibhuti Bhusan Kakoti

Abstract Background Garcinia lanceifolia Roxb. has been used by many ethnic communities of Northeast India to mitigate various disorders like dyspepsia, ulcers, diabetes, etc. However, a robust scientific study on its antidiabetic and antiulcer potential is unavailable till date. The aim of this present study is to scientifically validate if the antidiabetic and antiulcer effects reported by the ethnic tribes of Assam has any scientific value or not. The effects were tested in adult Wistar albino rats using approved animal models for preclinical testing of pharmacological activities. Results The hydroalcoholic extract of the bark of Garcinia lanceifolia Roxb. was prepared and its LD50 was calculated. The LD50 was determined to be greater than 5000 mg/kg body weight. The extract at doses of 250 mg/kg body weight and 500 mg/kg body weight was found to exhibit a very potent dose-dependent antidiabetic activity. The results were backed by a battery of test including analysis of serum levels of blood glucose, lipid profiles, in vivo antioxidant enzymes, and histopathological studies. Evidence of dose-dependent antiulcer activity of the extract was backed by robust scientific data. It was found that HAEGL induced a significant dose-dependent increase in the ulcer index in both alcohol-induced and acetic acid-induced ulcer models, which was evident from the macroscopic observation of the inner lining of the gastric mucosa and the histological evaluation of the extracted stomach. Conclusion The results suggested that the bark of Garcinia lanceifolia (Roxb.) has significant antidiabetic and antiulcer potential. Further studies with respect to the development herbal dosage forms and its safety evaluation are required.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


Perfusion ◽  
2020 ◽  
Vol 35 (8) ◽  
pp. 826-832
Author(s):  
Tomomi Hasegawa ◽  
Yoshihiro Oshima ◽  
Shinji Yokoyama ◽  
Asuka Akimoto ◽  
Yusuke Misaka ◽  
...  

Objective: The use of biocompatible materials to reduce the systemic activation of inflammation and coagulation pathways is expanding rapidly. However, there have been few clinical studies of biocompatible circuits for pediatric cardiopulmonary bypass. This pilot study aimed to preliminarily evaluate the biocompatibility of SEC-1 coat™ (SEC) for cardiopulmonary bypass circuits in pediatric cardiac surgery. Methods: Twenty infants undergoing cardiac surgery for isolated ventricular septal defects at Kobe Children’s Hospital were assigned randomly to an SEC-coated (SEC group, n = 10) or heparin-coated (control group, n = 10) circuit. Perioperative data and the following markers were prospectively analyzed: platelet counts and interleukin-6, interleukin-8, C3a, β-thromboglobulin, and thrombin–antithrombin complex levels. Results: Neither patient characteristics nor postoperative clinical outcomes differed significantly between the SEC and control groups. Platelet counts markedly decreased during cardiopulmonary bypass in both groups, but were significantly better preserved in the SEC group. Fewer patients needed postoperative platelet transfusions in the SEC group. After cardiopulmonary bypass termination, serum levels of β-thromboglobulin and thrombin–antithrombin complex were significantly lower in the SEC than in the control group. Although the differences were not statistically significant, serum levels of interleukin-6, interleukin-8, and C3a had a tendency toward being lower in the SEC group, with good preservation of leukocyte counts, fibrinogen, and antithrombin III. Conclusion: SEC-1 coat™ for cardiopulmonary bypass circuits have good biocompatibility with regard to platelet preservation and in terms of attenuating inflammatory reaction or coagulation activation during pediatric cardiac surgery. It can be beneficial in pediatric as well as adult cardiac surgery.


1997 ◽  
Vol 152 (3) ◽  
pp. 355-363 ◽  
Author(s):  
L Ferasin ◽  
G Gabai ◽  
J Beattie ◽  
G Bono ◽  
A T Holder

The ability of site-specific antipeptide antisera to enhance the biological activity of ovine FSH (oFSH) in vivo was investigated using hypopituitary Snell dwarf mice. These animals were shown to respond to increasing doses of oFSH (3·3–90 μg/day), administered in two daily injections over a 5-day treatment period, in a highly significant dose-dependent fashion. The responses measured were increases in uterine weight, ovarian weight and the index of keratinisation in vaginal smears. The dose-dependent response to oFSH confirmed the suitability of this animal model for these investigations and suggested the suboptimal dose of oFSH (20 μg/day) for use in enhancement studies. Five peptides derived from the β subunit of bovine FSH (bFSH) (A, residues 33–47; B, 40–51; C, 69–80; D, 83–94; E, 27–39) were used to generate polyclonal antipeptide antisera. Of these peptides, only A and B produced an antiserum (raised in sheep) capable of recognising 125I-bFSH in a liquid phase RIA. Antisera prepared against peptide A or peptide B were found to significantly enhance the biological activity of 20 μg oFSH/day over a 5-day treatment period. The response to antipeptide antisera alone did not differ significantly from that observed in PBS-injected control animals, neither did the response to FSH alone differ from that observed in animals treated with FSH plus preimmune serum. Thus the enhanced responses are dependent upon the presence of FSH plus antipeptide antiserum. Peptides A and B are located in a region thought to be involved in receptor recognition, this may have implications for the mechanism underlying this phenomenon and/or the structure/function relationships of FSH. That FSH-enhancing antisera can be generated by immunisation of animals with peptides A and B suggests that it may be possible to develop these peptides as vaccines capable of increasing reproductive performance, such as ovulation rate. The high degree of sequence homology between ovine, bovine and porcine (and to a lesser extent human and equine) FSH in the region covered by peptides A and B suggests that these peptides could also be used to promote and regulate ovarian function in all of these species. Journal of Endocrinology (1997) 152, 355–363


2016 ◽  
Vol 94 (7) ◽  
pp. 788-796 ◽  
Author(s):  
Bhawana Gupta ◽  
Sabyasachi Chakraborty ◽  
Soumya Saha ◽  
Sunita Gulabsingh Chandel ◽  
Atul Kumar Baranwal ◽  
...  

Shikonin possess a diverse spectrum of pharmacological properties in multiple therapeutic areas. However, the nociceptive effect of shikonin is not largely known. To investigate the antinociceptive potential of shikonin, panel of GPCRs, ion channels, and enzymes involved in pain pathogenesis were studied. To evaluate the translation of shikonin efficacy in vivo, it was tested in 3 established rat pain models. Our study reveals that shikonin has significant inhibitory effect on pan sodium channel/N1E115 and NaV1.7 channel with half maximal inhibitory concentration (IC50) value of 7.6 μmol/L and 6.4 μmol/L, respectively, in a cell-based assay. Shikonin exerted significant dose dependent antinociceptive activity at doses of 0.08%, 0.05%, and 0.02% w/v in pinch pain model. In mechanical hyperalgesia model, dose of 10 and 3 mg/kg (intraperitoneal) produced dose-dependent analgesia and showed 67% and 35% reversal of hyperalgesia respectively at 0.5 h. Following oral administration, it showed 39% reversal at 30 mg/kg dose. When tested in first phase of formalin induced pain, shikonin at 10 mg/kg dose inhibited paw flinching by ∼71%. In all studied preclinical models, analgesic effect was similar or better than standard analgesic drugs. The present study unveils the mechanistic role of shikonin on pain modulation, predominantly via sodium channel modulation, suggesting that shikonin could be developed as a potential pain blocker.


1997 ◽  
Vol 82 (12) ◽  
pp. 4167-4170 ◽  
Author(s):  
Constantine Tsigos ◽  
Dimitris A. Papanicolaou ◽  
Ioannis Kyrou ◽  
Ruby Defensor ◽  
Constantine S. Mitsiadis ◽  
...  

Inflammatory cytokines have metabolic actions that probably contribute to the general adaptation of the organism during infectious or inflammatory stress. To examine the effects of interleukin 6 (IL-6), the main circulating cytokine, on glucose metabolism in man, we performed dose-response studies of recombinant human IL-6 in normal volunteers. Increasing single doses of IL-6 (0.1, 0.3, 1.0, 3.0, and 10.0 mg/Kg BW) were injected sc in 15 healthy male volunteers (3 in each dose) after a 12-h fast. All IL-6 doses were tolerated well and produced no significant adverse effects. We measured the circulating levels of glucose, insulin, C-peptide, and glucagon at baseline and half-hourly over 4 h after the IL-6 injection. Mean peak plasma levels of IL-6 were achieved between 120 and 240 min and were 8, 22, 65, 290, and 4050 pg/mL, respectively, for the 5 doses. After administration of the 2 smaller IL-6 doses, we observed no significant changes in plasma glucose levels, which, because of continued fasting, decreased slightly over time. By 60 min after the 3 higher IL-6 doses, however, the decline in fasting blood glucose was arrested, and glucose levels increased in a dose-dependent fashion. The concurrent levels of plasma insulin and C-peptide were not affected by any IL-6 dose. In contrast, IL-6 caused significant increases in plasma glucagon levels, which peaked between 120 and 150 min after the IL-6 injection. In conclusion, sc IL-6 administration induced dose-dependent increases in fasting blood glucose, probably by stimulating glucagon release and other counteregulatory hormones and/or by inducing peripheral resistance to insulin action.


Sign in / Sign up

Export Citation Format

Share Document