Daily delivery of dietary nitrogen to the periphery is stable in rats adapted to increased protein intake

2001 ◽  
Vol 281 (4) ◽  
pp. E826-E836 ◽  
Author(s):  
Céline Morens ◽  
Claire Gaudichon ◽  
Gilles Fromentin ◽  
Agnès Marsset-Baglieri ◽  
Ahmed Bensaïd ◽  
...  

Dietary nitrogen was traced in rats adapted to a 50% protein diet and given a meal containing 1.50 g 15N-labeled protein (HP-50 group). This group was compared with rats usually consuming a 14% protein diet and fed a meal containing either 0.42 g (AP-14 group) or 1.50 g (AP-50 group) of 15N-labeled protein. In the HP group, the muscle nonprotein nitrogen pool was doubled when compared with the AP group. The main adaptation was the enhancement of dietary nitrogen transferred to urea (2.2 ± 0.5 vs. 1.3 ± 0.1 mmol N/100 g body wt in the HP-50 and AP-50 groups, respectively). All amino acids reaching the periphery except arginine and the branched-chain amino acids were depressed. Consequently, dietary nitrogen incorporation into muscle protein was paradoxically reduced in the HP-50 group, whereas more dietary nitrogen was accumulated in the free nitrogen pool. These results underline the important role played by splanchnic catabolism in adaptation to a high-protein diet, in contrast to muscle tissue. Digestive kinetics and splanchnic anabolism participate to a lesser extent in the regulation processes.

1988 ◽  
Vol 254 (2) ◽  
pp. 579-584 ◽  
Author(s):  
P J Garlick ◽  
I Grant

Rates of muscle protein synthesis were measured in vivo in tissues of post-absorptive young rats that were given intravenous infusions of various combinations of insulin and amino acids. In the absence of amino acid infusion, there was a steady rise in muscle protein synthesis with plasma insulin concentration up to 158 mu units/ml, but when a complete amino acids mixtures was included maximal rates were obtained at 20 mu units/ml. The effect of the complete mixture could be reproduced by a mixture of essential amino acids or of branched-chain amino acids, but not by a non-essential mixture, alanine, methionine or glutamine. It is concluded that amino acids, particularly the branched-chain ones, increase the sensitivity of muscle protein synthesis to insulin.


2017 ◽  
Vol 313 (3) ◽  
pp. F805-F814 ◽  
Author(s):  
Takuya Yoshida ◽  
Sachika Kakizawa ◽  
Yuri Totsuka ◽  
Miho Sugimoto ◽  
Shinji Miura ◽  
...  

A low-protein diet (LPD) protects against the progression of renal injury in patients with chronic kidney disease (CKD). However, LPD may accelerate muscle wasting in these patients. Both exercise and branched-chain amino acids (BCAA) are known to increase muscle protein synthesis by activating the mammalian target of rapamycin (mTOR) pathway. The aim of this study was to investigate whether endurance exercise and BCAA play a role for increasing muscle protein synthesis in LPD-fed CKD (5/6 nephrectomized) rats. Both CKD and sham rats were pair-fed on LPD or LPD fortified with a BCAA diet (BD), and approximately one-half of the animals in each group was subjected to treadmill exercise (15 m/min, 1 h/day, 5 days/wk). After 7 wk, renal function was measured, and soleus muscles were collected to evaluate muscle protein synthesis. Renal function did not differ between LPD- and BD-fed CKD rats, and the treadmill exercise did not accelerate renal damage in either group. The treadmill exercise slightly increased the phosphorylation of p70s6 kinase, a marker of mTOR activity, in the soleus muscle of LPD-fed CKD rats compared with the sham group. Furthermore, BCAA supplementation of the LPD-fed, exercise-trained CKD rats restored the phosphorylation of p70s6 kinase to the same level observed in the sham group; however, the corresponding induced increase in muscle protein synthesis and muscle mass was marginal. These results indicate that the combination of treadmill exercise and BCAA stimulates cell signaling to promote muscle protein synthesis; however, the implications of this effect for muscle growth remain to be clarified.


2019 ◽  
Vol 75 (1) ◽  
pp. 24-31 ◽  
Author(s):  
Paula Juricic ◽  
Sebastian Grönke ◽  
Linda Partridge

Abstract Branched-chain amino acids (BCAAs) have been suggested to be particularly potent activators of Target of Rapamycin (TOR) signaling. Moreover, increased circulating BCAAs are associated with higher risk of insulin resistance and diabetes in both mice and humans, and with increased mortality in mice. However, it remains unknown if BCAAs play a more prominent role in longevity than do other essential amino acids (EAAs). To test for a more prominent role of BCAAs in lifespan and related traits in Drosophila, we restricted either BCAAs or a control group of three other EAAs, threonine, histidine and lysine (THK). BCAA restriction induced compensatory feeding, lipid accumulation, stress resistance and amelioration of age-related gut pathology. It also extended lifespan in a dietary-nitrogen-dependent manner. Importantly, the control restriction of THK had similar effects on these phenotypes. Our control diet was designed to have every EAA equally limiting for growth and reproduction, and our findings therefore suggest that the level of the most limiting EAAs in the diet, rather than the specific EAAs that are limiting, determines the response of these phenotypes to EAA restriction.


Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1510 ◽  
Author(s):  
Utpal Prodhan ◽  
Amber Milan ◽  
Eric Thorstensen ◽  
Matthew Barnett ◽  
Ralph Stewart ◽  
...  

Dairy, as a major component of a high protein diet, is a critical dietary source of branched chain amino acids (BCAA), which are biomarkers of health and diseases. While BCAA are known to be key stimulators of protein synthesis, elevated circulatory BCAA is an independent risk factor for type 2 diabetes mellitus. This study examined the impact of altered dairy intake on plasma BCAA and their potential relationship to insulin sensitivity. Healthy adults (n = 102) were randomized to receive dietary advice to reduce, maintain, or increase habitual dairy intake for 1 month. Food intake was recorded with food frequency questionnaires. Self-reported protein intake from dairy was reported to be reduced (−14.6 ± 3.0 g/day), maintained (−4.0 ± 2.0 g/day) or increased (+13.8 ± 4.1 g/day) according to group allocation. No significant alterations in circulating free amino acids (AA), including BCAA, were measured. Insulin sensitivity, as assessed by homeostatic model assessment-insulin resistance (HOMA-IR), was also unaltered. A significant change in dairy protein intake showed no significant effect on fasting circulatory BCAA and insulin sensitivity in healthy populations.


1990 ◽  
Vol 79 (5) ◽  
pp. 457-466 ◽  
Author(s):  
Rita J. Louard ◽  
Eugene J. Barrett ◽  
Robert A. Gelfand

1. Using the forearm balance method, together with systemic infusions of l-[ring-2,6-3H]phenylalanine and l-[1-14C]leucine, we examined the effects of infused branched-chain amino acids on whole-body and skeletal muscle amino acid kinetics in 10 postabsorptive normal subjects; 10 control subjects received only saline. 2. Infusion of branched-chain amino acids caused a four-fold rise in arterial branched-chain amino acid levels and a two-fold rise in branched-chain keto acids; significant declines were observed in circulating levels of most other amino acids, including phenylalanine, which fell by 34%. Plasma insulin levels were unchanged from basal levels (8 ± 1 μ-units/ml). 3. Whole-body phenylalanine flux, an index of proteolysis, was significantly suppressed by branched-chain amino acid infusion (P < 0.002), and forearm phenylalanine production was also inhibited (P < 0.03). With branched-chain amino acid infusion total leucine flux rose, with marked increments in both oxidative and non-oxidative leucine disposal (P < 0.001). Proteolysis, as measured by endogenous leucine production, showed a modest 12% decrease, although this was not significant when compared with saline controls. The net forearm balance of leucine and other branched-chain amino acids changed from a basal net output to a marked net uptake (P < 0.001) during branched-chain amino acid infusion, with significant stimulation of local leucine disposal. Despite the rise in whole-body non-oxidative leucine disposal, and in forearm leucine uptake and disposal, forearm phenylalanine disposal, an index of muscle protein synthesis, was not stimulated by infusion of branched-chain amino acids. 4. The results suggest that in normal man branched-chain amino acid infusion suppresses skeletal muscle proteolysis independently of any rise of plasma insulin. Muscle branched-chain amino acid uptake rose dramatically in the absence of any apparent increase in muscle protein synthesis, as measured by phenylalanine disposal, or in branched-chain keto acid release. Thus, an increase in muscle branched-chain amino acid concentrations and/ or local branched-chain amino acid oxidation must account for the increased disposal of branched-chain amino acids.


Sign in / Sign up

Export Citation Format

Share Document