miR-128 participates in the pathogenesis of chronic constipation by regulating the p38α/M-CSF inflammatory signaling pathway

2021 ◽  
Vol 321 (4) ◽  
pp. G436-G447
Author(s):  
Yuntian Hong ◽  
Xianghai Ren ◽  
Weicheng Liu ◽  
Kongliang Sun ◽  
Baoxiang Chen ◽  
...  

In this study, we constructed a murine model and identified a novel signaling mechanism involved in the chronic constipation progression. Our findings on the role of miR-128/p38α/M-CSF axis provide new insights into the treatment of chronic constipation.

Author(s):  
Yuan Yuan ◽  
Guangjian Fan ◽  
Yuqi Liu ◽  
Lu Liu ◽  
Tong Zhang ◽  
...  

AbstractSepsis is a heterogeneous syndrome induced by a dysregulated host response to infection. Glycolysis plays a role in maintaining the immune function of macrophages, which is crucial for severely septic patients. However, how the pathways that link glycolysis and macrophages are regulated is still largely unknown. Here, we provide evidence to support the function of KLF14, a novel Krüppel-like transcription factor, in the regulation of glycolysis and the immune function of macrophages during sepsis. KLF14 deletion led to significantly increased mortality in lethal models of murine endotoxemia and sepsis. Mechanistically, KLF14 decreased glycolysis and the secretion of inflammatory cytokines by macrophages by inhibiting the transcription of HK2. In addition, we confirmed that the expression of KLF14 was upregulated in septic patients. Furthermore, pharmacological activation of KLF14 conferred protection against sepsis in mice. These findings uncover a key role of KLF14 in modulating the inflammatory signaling pathway and shed light on the development of KLF14-targeted therapeutics for sepsis.


2006 ◽  
Vol 175 (4S) ◽  
pp. 95-95
Author(s):  
Raymond R. Rackley ◽  
Mei Kuang ◽  
Ashwin A. Vaze ◽  
Joseph Abdelmalak ◽  
Sandip P. Vasavada ◽  
...  

Author(s):  
Md. Junaid ◽  
Yeasmin Akter ◽  
Syeda Samira Afrose ◽  
Mousumi Tania ◽  
Md. Asaduzzaman Khan

Background: AKT/PKB is an important enzyme with numerous biological functions, and its overexpression is related to the carcinogenesis. AKT stimulates different signaling pathways that are downstream of activated tyrosine kinases and phosphatidylinositol 3-kinase, hence functions as an important target for anti-cancer drugs. Objective: In this review article, we have interpreted the role of AKT signaling pathways in cancer and natural inhibitory effect of Thymoquinone (TQ) in AKT and its possible mechanism. Method: We have collected the updated information and data on AKT, their role in cancer and inhibitory effect of TQ in AKT signaling pathway from google scholar, PubMed, Web of Science, Elsevier, Scopus and many more. Results: There are many drugs already developed, which can target AKT, but very few among them have passed clinical trials. TQ is a natural compound, mainly found in black cumin, which has been found to have potential anti-cancer activities. TQ targets numerous signaling pathways, including AKT, in different cancers. In fact, many studies revealed that AKT is one of the major targets of TQ. The preclinical success of TQ suggests its clinical studies on cancer. Conclusion: This review article summarizes the role of AKT in carcinogenesis, its potent inhibitors in clinical trials, and how TQ acts as an inhibitor of AKT and TQ’s future as a cancer therapeutic drug.


2020 ◽  
Vol 105 (3) ◽  
Author(s):  
Ying Xiao ◽  
Lei‐lei Li ◽  
Asma Bibi ◽  
Ning Zhang ◽  
Ting Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document