scholarly journals Hydrogen sulfide improves intestinal recovery following ischemia by endothelial nitric oxide-dependent mechanisms

2017 ◽  
Vol 312 (5) ◽  
pp. G450-G456 ◽  
Author(s):  
Amanda R. Jensen ◽  
Natalie A. Drucker ◽  
Sina Khaneki ◽  
Michael J. Ferkowicz ◽  
Troy A. Markel

Hydrogen sulfide (H2S) is an endogenous gasotransmitter that has vasodilatory properties. It may be a novel therapy for intestinal ischemia-reperfusion (I/R) injury. We hypothesized that 1) H2S would improve postischemic survival, mesenteric perfusion, mucosal injury, and inflammation compared with vehicle and 2) the benefits of H2S would be mediated through endothelial nitric oxide. C57BL/6J wild-type and endothelial nitric oxide synthase knockout (eNOS KO) mice were anesthetized, and a midline laparotomy was performed. Intestines were eviscerated, the small bowel mesenteric root identified, and baseline intestinal perfusion was determined using laser Doppler. Intestinal ischemia was established by temporarily occluding the superior mesenteric artery. Following ischemia, the clamp was removed, and the intestines were allowed to recover. Either sodium hydrosulfide (2 nmol/kg or 2 µmol/kg NaHS) in PBS vehicle or vehicle only was injected into the peritoneum. Animals were allowed to recover and were assessed for mesenteric perfusion, mucosal injury, and intestinal cytokines. P values < 0.05 were significant. H2S improved mesenteric perfusion and mucosal injury scores following I/R injury. However, in the setting of eNOS ablation, there was no improvement in these parameters with H2S therapy. Application of H2S also resulted in lower levels of intestinal cytokine production following I/R. Intraperitoneal H2S therapy can improve mesenteric perfusion, intestinal mucosal injury, and intestinal inflammation following I/R. The benefits of H2S appear to be mediated through endothelial nitric oxide-dependent pathways. NEW & NOTEWORTHY H2S is a gaseous mediator that acts as an anti-inflammatory agent contributing to gastrointestinal mucosal defense. It promotes vascular dilation, mucosal repair, and resolution of inflammation following intestinal ischemia and may be exploited as a novel therapeutic agent. It is unclear whether H2S works through nitric oxide-dependent pathways in the intestine. We appreciate that H2S was able to improve postischemic recovery of mesenteric perfusion, mucosal integrity, and inflammation. The beneficial effects of H2S appear to be mediated through endothelial nitric oxide-dependent pathways.

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Thomas Knowles ◽  
Brian Hosfield ◽  
Chris Shelley ◽  
Troy Markel

Background and Hypothesis: Acute Mesenteric Ischemia (AMI) is characterized by a sudden decrease in blood flow to varying segments of the small intestine. It can lead to cellular damage, life-threatening intestinal necrosis and, if corrected, subsequent reperfusion injury. Reducing inflammation is key to preventing further cell damage. We therefore hypothesized that administration of mesalamine prior to intestinal ischemia would reduce epithelial cell damage by I/R and restore mesenteric perfusion. Project Methods: C57Bl6J wild type (WT) mice were assigned to mesalamine or vehicle treatment groups (N=8/group). Prior to surgery, mice underwent intraperitoneal injection of treatment. Midline laparotomy was performed. Intestines were eviscerated, superior mesenteric artery (SMA) located, and baseline intestinal perfusion determined using Laser Doppler. SMA was then occluded to induce intestinal ischemia for sixty minutes, thereafter the occlusion was removed. Mesenteric reperfusion was then determined by Laser Doppler. Midline incisions were reapproximated with suture and animals were allowed to recover. After twentyfour hours, animals were re-anesthetized and underwent final assessment of mesenteric perfusion by Laser-Doppler. Animals were then euthanized, and intestines explanted. A portion of tissue was snap frozen for assessment for proinflammatory cytokines by ELISA. Another portion of tissue was stained with H&E and scored for intestinal mucosal injury. Data were assessed for normalcy and compared by Mann-Whitney-U test. P<.05 was significant. Results: Preliminary data suggests mesalamine treated mice show no significant change in mortality compared to vehicle. Mesalamine treated mice also show an insignificant increase in histological damage score. Despite this, they show an insignificant improvement in oxygen perfusion. Conclusion: Intraperitoneal mesalamine administration does not appear to be a useful method for limiting cell damage in GI diseases associated with AMI such as necrotizing enterocolitis. A larger sample size is needed to further elucidate treatment effects.


2020 ◽  
Vol 16 ◽  
Author(s):  
Andrey Krylatov ◽  
Leonid Maslov ◽  
Sergey Y. Tsibulnikov ◽  
Nikita Voronkov ◽  
Alla Boshchenko ◽  
...  

: There is considerable evidence in the heart that autophagy in cardiomyocytes is activated by hypoxia/reoxygenation (H/R) or in hearts by ischemia/reperfusion (I/R). Depending upon the experimental model and duration of ischemia, increases in autophagy in this setting maybe beneficial (cardioprotective) or deleterious (exacerbate I/R injury). Aside from the conundrum as to whether or not autophagy is an adaptive process, it is clearly regulated by a number of diverse molecules including reactive oxygen species (ROS), various kinases, hydrogen sulfide (H2S) and nitric oxide (NO). The purpose this review is to address briefly the controversy regarding the role of autophagy in this setting and to examine a variety of disparate molecules that are involved in its regulation.


2004 ◽  
Vol 494 (2-3) ◽  
pp. 241-249 ◽  
Author(s):  
Gabriela Cavriani ◽  
Ricardo Martins Oliveira-Filho ◽  
Aryene Góes Trezena ◽  
Zilma Lúcia da Silva ◽  
Helori Vanni Domingos ◽  
...  

2006 ◽  
Vol 291 (3) ◽  
pp. F619-F628 ◽  
Author(s):  
Zhengrong Guan ◽  
Glenda Gobé ◽  
Desley Willgoss ◽  
Zoltán H. Endre

Endothelial dysfunction in ischemic acute renal failure (IARF) has been attributed to both direct endothelial injury and to altered endothelial nitric oxide synthase (eNOS) activity, with either maximal upregulation of eNOS or inhibition of eNOS by excess nitric oxide (NO) derived from iNOS. We investigated renal endothelial dysfunction in kidneys from Sprague-Dawley rats by assessing autoregulation and endothelium-dependent vasorelaxation 24 h after unilateral (U) or bilateral (B) renal artery occlusion for 30 (U30, B30) or 60 min (U60, B60) and in sham-operated controls. Although renal failure was induced in all degrees of ischemia, neither endothelial dysfunction nor altered facilitation of autoregulation by 75 pM angiotensin II was detected in U30, U60, or B30 kidneys. Baseline and angiotensin II-facilitated autoregulation were impaired, methacholine EC50 was increased, and endothelium-derived hyperpolarizing factor (EDHF) activity was preserved in B60 kidneys. Increasing angiotensin II concentration restored autoregulation and increased renal vascular resistance (RVR) in B60 kidneys; this facilitated autoregulation, and the increase in RVR was abolished by 100 μM furosemide. Autoregulation was enhanced by Nω-nitro-l-arginine methyl ester. Peri-ischemic inhibition of inducible NOS ameliorated renal failure but did not prevent endothelial dysfunction or impaired autoregulation. There was no significant structural injury to the afferent arterioles with ischemia. These results suggest that tubuloglomerular feedback is preserved in IARF but that excess NO and probably EDHF produce endothelial dysfunction and antagonize autoregulation. The threshold for injury-producing, detectable endothelial dysfunction was higher than for the loss of glomerular filtration rate. Arteriolar endothelial dysfunction after prolonged IARF is predominantly functional rather than structural.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yong-Peng Yu ◽  
Xiang-Lin Chi ◽  
Li-Jun Liu

Gases such as nitric oxide (NO) and carbon monoxide (CO) play important roles both in normal physiology and in disease. Recent studies have shown that hydrogen sulfide (H2S) protects neurons against oxidative stress and ischemia-reperfusion injury and attenuates lipopolysaccharides (LPS) induced neuroinflammation in microglia, exhibiting anti-inflammatory and antiapoptotic activities. The gas H2S is emerging as a novel regulator of important physiologic functions such as arterial diameter, blood flow, and leukocyte adhesion. It has been known that multiple factors, including oxidative stress, free radicals, and neuronal nitric oxide synthesis as well as abnormal inflammatory responses, are involved in the mechanism underlying the brain injury after subarachnoid hemorrhage (SAH). Based on the multiple physiologic functions of H2S, we speculate that it might be a promising, effective, and specific therapy for brain injury after SAH.


1998 ◽  
Vol 274 (3) ◽  
pp. G465-G471 ◽  
Author(s):  
Kouichirou Wada ◽  
Yoshinori Kamisaki ◽  
Tsuyoshi Ohkura ◽  
Gaku Kanda ◽  
Kentaro Nakamoto ◽  
...  

Nitric oxide (NO) generation in the rat gastric mucosa during ischemia-reperfusion was measured using an NO-sensitive electrode. Under pentobarbital sodium anesthesia, an electrode was inserted into the submucosa from the serous membrane side in the fundus. After steady-state baseline recording, the celiac artery was clamped for 30 min, and then ischemia-reperfusion was achieved by removing the clamp. The clamping of the celiac artery caused a decrease in blood flow and an increase in NO level in the gastric tissue. Just after the removal of the clamp, the NO level rapidly fell and returned to the baseline level. Administration of N G-nitro-l-arginine methyl ester (an NO synthase inhibitor, 30 mg/kg ip) before ischemia significantly attenuated both the increase in NO level during ischemia and the formation of acute gastric mucosal lesions observed after 60 min reperfusion. Administration of superoxide dismutase (a superoxide radical scavenger, 10,000 U/kg iv) at the end of ischemia inhibited both the rapid decrease in NO level during the reperfusion and the gastric mucosal erosions. Because NO and superoxide radical produce a highly reactive peroxynitrite, it can be argued that NO has an important pathological role in acute gastric mucosal injury induced by ischemia-reperfusion. Our conclusion was strongly supported by immunohistochemical staining of nitrotyrosine residues, an indication of peroxynitrite formation.


2001 ◽  
Vol 281 (3) ◽  
pp. C849-C856 ◽  
Author(s):  
Wen-Ning Qi ◽  
Zuo-Qin Yan ◽  
Peter G. Whang ◽  
Qi Zhou ◽  
Long-En Chen ◽  
...  

This study examined mRNA and protein expressions of neuronal (nNOS), inducible (iNOS), and endothelial nitric oxide synthases (eNOS) in peripheral nerve after ischemia-reperfusion (I/R). Sixty-six rats were divided into the ischemia only and I/R groups. One sciatic nerve of each animal was used as the experimental side and the opposite untreated nerve as the control. mRNA levels in the nerve were quantitatively measured by competitive PCR, and protein was determined by Western blotting and immunohistochemical staining. The results showed that, after ischemia (2 h), both nNOS and eNOS protein expressions decreased. After I/R (2 h of ischemia followed by 3 h of reperfusion), expression of both nNOS and eNOS mRNA and protein decreased further. In contrast, iNOS mRNA significantly increased after ischemia and was further upregulated (14-fold) after I/R, while iNOS protein was not detected. The results reveal the dynamic expression of individual NOS isoforms during the course of I/R injury. An understanding of this modulation on a cellular and molecular level may lead to understanding the mechanisms of I/R injury and to methods of ameliorating peripheral nerve injury.


2012 ◽  
Vol 302 (5) ◽  
pp. E481-E495 ◽  
Author(s):  
Rinrada Kietadisorn ◽  
Rio P. Juni ◽  
An L. Moens

Endothelial nitric oxide synthase (eNOS) serves as a critical enzyme in maintaining vascular pressure by producing nitric oxide (NO); hence, it has a crucial role in the regulation of endothelial function. The bioavailability of eNOS-derived NO is crucial for this function and might be affected at multiple levels. Uncoupling of eNOS, with subsequently less NO and more superoxide generation, is one of the major underlying causes of endothelial dysfunction found in atherosclerosis, diabetes, hypertension, cigarette smoking, hyperhomocysteinemia, and ischemia/reperfusion injury. Therefore, modulating eNOS uncoupling by stabilizing eNOS activity, enhancing its substrate, cofactors, and transcription, and reversing uncoupled eNOS are attractive therapeutic approaches to improve endothelial function. This review provides an extensive overview of the important role of eNOS uncoupling in the pathogenesis of endothelial dysfunction and the potential therapeutic interventions to modulate eNOS for tackling endothelial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document