Gene and protein expressions of nitric oxide synthases in ischemia-reperfused peripheral nerve of the rat

2001 ◽  
Vol 281 (3) ◽  
pp. C849-C856 ◽  
Author(s):  
Wen-Ning Qi ◽  
Zuo-Qin Yan ◽  
Peter G. Whang ◽  
Qi Zhou ◽  
Long-En Chen ◽  
...  

This study examined mRNA and protein expressions of neuronal (nNOS), inducible (iNOS), and endothelial nitric oxide synthases (eNOS) in peripheral nerve after ischemia-reperfusion (I/R). Sixty-six rats were divided into the ischemia only and I/R groups. One sciatic nerve of each animal was used as the experimental side and the opposite untreated nerve as the control. mRNA levels in the nerve were quantitatively measured by competitive PCR, and protein was determined by Western blotting and immunohistochemical staining. The results showed that, after ischemia (2 h), both nNOS and eNOS protein expressions decreased. After I/R (2 h of ischemia followed by 3 h of reperfusion), expression of both nNOS and eNOS mRNA and protein decreased further. In contrast, iNOS mRNA significantly increased after ischemia and was further upregulated (14-fold) after I/R, while iNOS protein was not detected. The results reveal the dynamic expression of individual NOS isoforms during the course of I/R injury. An understanding of this modulation on a cellular and molecular level may lead to understanding the mechanisms of I/R injury and to methods of ameliorating peripheral nerve injury.

Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1259 ◽  
Author(s):  
Kayo Horie ◽  
Naoki Nanashima ◽  
Hayato Maeda

Phytoestrogens are plant-derived chemicals that are found in many foods and have estrogenic activity. We previously showed that blackcurrant extract (BCE) and anthocyanins have phytoestrogenic activity mediated via estrogen receptors (ERs), and anthocyanins may improve vascular function. BCE contains high levels of anthocyanins, but their health-promoting effects are unclear. This study examined the effects of BCE on the regulation of endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) synthesis in human endothelial cells as key regulators in cardiovascular disease. The results showed that eNOS mRNA levels were significantly upregulated in BCE- or anthocyanin-treated human vascular endothelial cells but decreased in cells treated with fulvestrant, an ER antagonist. These results corresponded with NO levels, suggesting that BCE and anthocyanin may regulate NO synthesis via eNOS expression. Thus, the phytoestrogenic effects exerted by BCE via ERs influenced eNOS mRNA expression and NO synthesis. In vivo, we investigated whether anthocyanin-rich BCE upregulated eNOS protein expression in ovariectomized (OVX) rats, a widely used animal model of menopause. Our results showed that anthocyanin-rich BCE significantly upregulated eNOS mRNA levels and NO synthesis through phytoestrogenic activity and therefore promoted blood vessel health in OVX rats as a postmenopausal model.


2002 ◽  
Vol 282 (2) ◽  
pp. R623-R626 ◽  
Author(s):  
Kazue Kikuchi-Utsumi ◽  
Bihu Gao ◽  
Hiroshi Ohinata ◽  
Masaaki Hashimoto ◽  
Noriyuki Yamamoto ◽  
...  

It has been shown that norepinephrine (NE) can mediate vasodilatation by stimulating the production of nitric oxide (NO) in brown adipose tissue (BAT), resulting in an increase in BAT blood flow. We speculated that constitutive NO synthase (NOS) is involved in this NO production. However, it is not known whether constitutive NOS is expressed in BAT. To answer this question, we assessed the expression of two types of constitutive NOS, endothelial (eNOS) and neuronal NOS (nNOS), in BAT of rats. eNOS was abundantly expressed in both BAT and isolated brown adipocytes, whereas nNOS was not. Cold exposure, which is known to stimulate NE release from sympathetic nerve terminals in BAT, led to a significant increase in eNOS mRNA in this tissue. In contrast, very low levels of inducible NOS (iNOS) mRNA were expressed, and cold stimulation failed to increase iNOS mRNA levels in BAT. These results suggest that eNOS is the primary isoform that is responsible for NO production in BAT and that its expression may be under sympathetic control.


2005 ◽  
Vol 289 (2) ◽  
pp. R613-R619 ◽  
Author(s):  
Charles E. Wood ◽  
Gin-Fu Chen ◽  
Maureen Keller-Wood

Fetal baroreflex responsiveness increases in late gestation. An important modulator of baroreflex activity is the generation of nitric oxide in the brainstem nuclei that integrate afferent and efferent reflex activity. The present study was designed to test the hypothesis that nitric oxide synthase (NOS) isoforms are expressed in the fetal brainstem and that the expression of one or more of these enzymes is reduced in late gestation. Brainstem tissue was rapidly collected from fetal sheep of known gestational ages (80, 100, 120, 130, 145 days gestation and 1 day and 1 wk postnatal). Neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) mRNA was measured using real-time PCR methodology specific for ovine NOS isoforms. The three enzymes were measured at the protein level using Western blot methodology. In tissue prepared for histology separately, the cellular pattern of immunostaining was identified in medullae from late-gestation fetal sheep. Fetal brainstem contained mRNA and protein of all three NOS isoforms, with nNOS the most abundant, followed by iNOS and eNOS, respectively. nNOS and iNOS mRNA abundances were highest at 80 days' gestation, with statistically significant decreases in abundance in more mature fetuses and postnatal animals. nNOS and eNOS protein abundance also decreased as a function of developmental age. nNOS and eNOS were expressed in neurons, iNOS was expressed in glia, and eNOS was expressed in vascular endothelial cells. We conclude that all three isoforms of NOS are constitutively expressed within the fetal brainstem, and the expression of all three forms is reduced with advancing gestation. We speculate that the reduced expression of NOS in this brain region plays a role in the increased fetal baroreflex activity in late gestation.


2008 ◽  
Vol 295 (1) ◽  
pp. R59-R66 ◽  
Author(s):  
Robin C. Looft-Wilson ◽  
Blair S. Ashley ◽  
Janelle E. Billig ◽  
Madeline R. Wolfert ◽  
Lindsay A. Ambrecht ◽  
...  

Hyperhomocysteinemia (HHcy) impairs endothelium-dependent vasodilation by increasing reactive oxygen species, thereby reducing nitric oxide (NO·) bioavailability. It is unclear whether reduced expression or function of the enzyme that produces NO·, endothelial nitric oxide synthase (eNOS), also contributes. It is also unclear whether resistance vessels that utilize both NO·and non-NO·vasodilatory mechanisms, undergo alteration of non-NO·mechanisms in this condition. We tested these hypotheses in male C57BL/6 mice with chronic HHcy induced by 6-wk high methionine/low-B vitamin feeding (Hcy: 89.2 ± 49.0 μM) compared with age-matched controls (Hcy: 6.6 ± 1.9 μM), using first-order mesenteric arteries. Dilation to ACh (10−9–10−4 M) was measured in isolated, cannulated, and pressurized (75 mmHg) arteries with and without N G-nitro-l-arginine methyl ester (l-NAME) (10−4 M) and/or indomethacin (10−5 M) to test endothelium-dependent dilation and non-NO·-dependent dilation, respectively. The time course of dilation to ACh (10−4 M) was examined to compare the initial transient dilation due to non-NO·, non-prostacyclin mechanism and the sustained dilation due to NO·. These experiments indicated that endothelium-dependent dilation was attenuated ( P < 0.05) in HHcy arteries due to downregulation of only NO·-dependent dilation. Western blot analysis indicated significantly less ( P < 0.05) basal eNOS and phospho-S1179-eNOS/eNOS in mesenteric arteries from HHcy mice but no difference in phospho-T495-eNOS/eNOS. S1179 eNOS phosphorylation was also significantly less in these arteries when stimulated with ACh ex vivo or in situ. Real-time PCR indicated no difference in eNOS mRNA levels. In conclusion, chronic diet-induced HHcy in mice impairs eNOS protein expression and phosphorylation at S1179, coincident with impaired NO·-dependent dilation, which implicates dysfunction in eNOS post-transcriptional regulation in the impaired endothelium-dependent vasodilation and microvascular disease that is common with HHcy.


Gerontology ◽  
2016 ◽  
Vol 63 (1) ◽  
pp. 36-44 ◽  
Author(s):  
Francisco Molina ◽  
María Luisa del Moral ◽  
María Ángeles Peinado ◽  
Alma Rus

Background: Nitric oxide (NO) appears to play a key role in the hypoxic injury to the brain. We have previously reported that hypoxia/reoxygenation downregulated NO synthases (NOS) in the adult striatum. Until now, no data were available concerning the influence of aging in conjunction with hypoxia/reoxygenation on the NO system in the striatum. Objective: The aim of this study was to assess the role of the NO pathway in the hypoxic aged striatum. Methods: Wistar rats 24-25 months old were submitted to hypobaric hypoxia (20 min)/reoxygenation (0 h, 24 h, 5 days). Expression (PCR, immunohistochemistry/image analysis) and activity (NADPH-diaphorase/image analysis) of NOS isoforms (neuronal NOS or nNOS, endothelial NOS or eNOS, inducible NOS or iNOS) were analyzed together with nitrated protein expression (immunohistochemistry/image analysis). NO levels were indirectly quantified as nitrates/nitrites (NOx). Results: The mRNA levels of NOS isoforms were undetectable at 0 h after hypoxia in the striatum compared to the control. At later reoxygenation times, nNOS mRNA decreased, while eNOS mRNA augmented. Protein levels of nNOS and eNOS rose at 24 h after hypoxia, and iNOS protein increased at 5 days. NOx levels remained unchanged, whereas in situ NOS activity and protein nitration diminished during reoxygenation in the aged striatum. Conclusion: The aged striatum may overexpress NOS isoforms as a neuroprotective-adaptive mechanism to hypoxia. However, this mechanism may not work properly in the aged striatum, since no changes in NO levels were detected after hypoxia. This may be related to the low activity of NOS isoforms in the hypoxic striatum.


1999 ◽  
Vol 276 (2) ◽  
pp. H699-H708 ◽  
Author(s):  
Thomas C. Resta ◽  
Louis G. Chicoine ◽  
John L. Omdahl ◽  
Benjimen R. Walker

We previously demonstrated augmented endothelium-derived nitric oxide (EDNO)-dependent pulmonary arterial dilation and increased arterial endothelial nitric oxide synthase (eNOS) levels in chronic hypoxic (CH) and monocrotaline (nonhypoxic) models of pulmonary arterial hypertension. Therefore, we hypothesized that the long-term elevation of arterial eNOS levels associated with CH is related to pulmonary hypertension or some factor(s) associated with hypertension and not directly to hypoxia. To test this hypothesis, we examined responses to the EDNO-dependent dilator ionomycin in U-46619-constricted, isolated, saline-perfused lungs from control rats, CH (4 wk at 380 mmHg) rats, and rats previously exposed to CH but returned to normoxia for 4 days or 2 wk. Microvascular pressure was assessed by double-occlusion technique, allowing calculation of segmental resistances. In addition, vascular eNOS immunoreactivity was assessed by quantitative immunohistochemistry, and eNOS mRNA abundance was determined by RT-PCR assays. Our findings indicate that 4-day and 2-wk posthypoxic rats exhibit persistent pulmonary hypertension, likely due to maintained arterial remodeling and polycythemia associated with prior exposure to CH. Furthermore, arterial dilation to ionomycin was augmented in lungs from each experimental group compared with controls. Finally, arterial eNOS immunoreactivity and whole lung eNOS mRNA levels remained elevated in posthypoxic animals. These findings suggest that altered vascular mechanical forces or vascular remodeling contributes to enhanced EDNO-dependent arterial dilation and upregulation of arterial eNOS in various models of established pulmonary hypertension.


2004 ◽  
Vol 16 (7) ◽  
pp. 689 ◽  
Author(s):  
H. Welter ◽  
H. Bollwein ◽  
F. Weber ◽  
S. Rohr ◽  
R. Einspanier

The expression of the endothelial and inducible nitric oxide synthases (eNOS and iNOS, respectively) was examined in the endometrium of cyclic and pregnant mares by real-time polymerase chain reaction and immunohistology. The concentration of eNOS mRNA varied throughout the oestrous cycle, with significantly higher transcripts on Day 5 of the oestrous cycle (P < 0.05), whereas iNOS transcription did not change significantly over time (P > 0.05). In early pregnant mares both eNOS and iNOS mRNA increased between Days 12 and 15 (P < 0.05). In cyclic mares, eNOS protein was detected immunocytochemically in endometrial epithelia, the basement membrane, the endothelial layer and smooth muscle cells of the vasculature. Using immunocytochemical methods, iNOS protein was undetectable in the endometrium of cyclic mares but could be demonstrated in pregnant mares. Endometrial epithelia of pregnant mares were immunopositive for both proteins with a more intense labelling for iNOS. Thus, the present study describes for the first time the modulation and spatial distribution of eNOS and iNOS expression during the oestrous cycle and early pregnancy, suggesting that ovarian steroids are differently involved in the regulation of each NOS. Localisation of eNOS protein in endometrial epithelia and various vascular components indicates that this isoform may be involved in the regulation of endometrial cyclicity. The presence and increase of both forms of NOS during early gestation suggest a role for them in the control of endometrial vascular bed and glandular activity to provide a suitable microenvironment for successful pregnancy.


2006 ◽  
Vol 291 (5) ◽  
pp. C803-C816 ◽  
Author(s):  
Charles D. Searles

The ability of the endothelium to produce nitric oxide is essential to maintenance of vascular homeostasis; disturbance of this ability is a major contributor to the pathogenesis of vascular disease. In vivo studies have demonstrated that expression of endothelial nitric oxide synthase (eNOS) is vital to endothelial function and have led to the understanding that eNOS expression is subject to modest but significant degrees of regulation. Subsequently, numerous physiological and pathophysiological stimuli have been identified that modulate eNOS expression via mechanisms that alter steady-state eNOS mRNA levels. These mechanisms involve changes in the rate of eNOS gene transcription (transcriptional regulation) and alteration of eNOS mRNA processing and stability (posttranscriptional regulation). In cultured endothelial cells, shear stress, transforming growth factor-β1, lysophosphatidylcholine, cell growth, oxidized linoleic acid, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, and hydrogen peroxide have been shown to increase eNOS expression. In contrast, tumor necrosis factor-α, hypoxia, lipopolysaccaride, thrombin, and oxidized LDL can decrease eNOS mRNA levels. For many of these stimuli, both transcriptional and posttranscriptional mechanisms contribute to regulation of eNOS expression. Recent studies have begun to further define signaling pathways responsible for changes in eNOS expression and have characterized cis- and trans-acting regulatory elements. In addition, a role has been identified for epigenetic control of eNOS mRNA levels. This review will discuss transcriptional and posttranscriptional regulation of eNOS with emphasis on the molecular mechanisms that have been identified for these processes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haidy A. Saleh ◽  
Eman Ramdan ◽  
Mohey M. Elmazar ◽  
Hassan M. E. Azzazy ◽  
Anwar Abdelnaser

AbstractDoxorubicin (DOX) chemotherapy is associated with the release of inflammatory cytokines from macrophages. This has been suggested to be, in part, due to DOX-mediated leakage of endotoxins from gut microflora, which activate Toll-like receptor 4 (TLR4) signaling in macrophages, causing severe inflammation. However, the direct function of DOX on macrophages is still unknown. In the present study, we tested the hypothesis that DOX alone is incapable of stimulating inflammatory response in macrophages. Then, we compared the anti-inflammatory effects of curcumin (CUR), resveratrol (RES) and sulforaphane (SFN) against lipopolysaccharide/interferon-gamma (LPS/IFN-γ)-mediated inflammation in the absence or presence of DOX. For this purpose, RAW 264.7 cells were stimulated with LPS/IFN-γ (10 ng/mL/10 U/mL) in the absence or presence of DOX (0.1 µM). Our results showed that DOX alone is incapable of stimulating an inflammatory response in RAW 264.7 macrophages. Furthermore, after 24 h of incubation with LPS/IFN-γ, a significant increase in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) mRNA levels was observed. Similarly, nitric oxide (NO) production and TNF-α and IL-6 protein levels were significantly upregulated. Moreover, in LPS/IFN-γ-treated macrophages, the microRNAs (miRNAs) miR-146a, miR-155, and miR-21 were significantly overexpressed. Interestingly, upon testing CUR, RES, and SFN against LPS/IFN-γ-mediated inflammation, only SFN was able to significantly reverse the LPS/IFN-γ-mediated induction of iNOS, TNF-α and IL-6 and attenuate miR-146a and miR-155 levels. In conclusion, SFN, at the transcriptional and posttranscriptional levels, exhibits potent immunomodulatory action against LPS/IFN-γ-stimulated macrophages, which may indicate SFN as a potential treatment for DOX-associated inflammation.


Sign in / Sign up

Export Citation Format

Share Document