Effect of heat shock preconditioning on NF-κB/I-κB pathway during I/R injury of the rat liver

2002 ◽  
Vol 282 (6) ◽  
pp. G962-G971 ◽  
Author(s):  
Hiroshi Uchinami ◽  
Yuzo Yamamoto ◽  
Makoto Kume ◽  
Kei Yonezawa ◽  
Yasuhide Ishikawa ◽  
...  

Hepatic ischemia-reperfusion (I/R) injury continues to be a fatal complication after liver surgery. Heat shock (HS) preconditioning is an effective strategy for protecting the liver from I/R injury, but its exact mechanism is still unclear. Because the activation of nuclear factor-κB (NF-κB) is an important event in the hepatic I/R-induced inflammatory response, the effect of HS preconditioning on the pathway for NF-κB activation was investigated. In the control group, NF-κB was activated 60 min after reperfusion, but this activation was suppressed in the HS group. Messenger RNA expressions of proinflammatory mediators during reperfusion were also reduced with HS preconditioning. Concomitant with NF-κB activation, NF-κB inhibitor I-κB proteins were degraded in the control group, but this degradation was suppressed in the HS group. This study shows that HS preconditioning protected the liver from I/R injury by suppressing the activation of NF-κB and the subsequent expression of proinflammatory mediators through the stabilization of I-κB proteins.

Hepatology ◽  
2009 ◽  
Vol 49 (5) ◽  
pp. 1718-1728 ◽  
Author(s):  
Nadine Huber ◽  
Nozomu Sakai ◽  
Thorsten Eismann ◽  
Thomas Shin ◽  
Satoshi Kuboki ◽  
...  

Hepatology ◽  
2012 ◽  
Vol 55 (3) ◽  
pp. 888-897 ◽  
Author(s):  
Nozomu Sakai ◽  
Heather L. Van Sweringen ◽  
Rebecca Schuster ◽  
John Blanchard ◽  
Justin M. Burns ◽  
...  

2005 ◽  
Vol 201 (7) ◽  
pp. 1135-1143 ◽  
Author(s):  
Allan Tsung ◽  
Rohit Sahai ◽  
Hiroyuki Tanaka ◽  
Atsunori Nakao ◽  
Mitchell P. Fink ◽  
...  

High-mobility group box 1 (HMGB1) is a nuclear factor that is released extracellularly as a late mediator of lethality in sepsis as well as after necrotic, but not apoptotic, death. Here we demonstrate that in contrast to the delayed role of HMGB1 in the systemic inflammation of sepsis, HMGB1 acts as an early mediator of inflammation and organ damage in hepatic ischemia reperfusion (I/R) injury. HMGB1 levels were increased during liver I/R as early as 1 h after reperfusion and then increased in a time-dependent manner up to 24 h. Inhibition of HMGB1 activity with neutralizing antibody significantly decreased liver damage after I/R, whereas administration of recombinant HMGB1 worsened I/R injury. Treatment with neutralizing antibody was associated with less phosphorylation of c-Jun NH2-terminal kinase and higher nuclear factor–κB DNA binding in the liver after I/R. Toll-like receptor 4 (TLR4)-defective (C3H/Hej) mice exhibited less damage in the hepatic I/R model than did wild-type (C3H/HeOuj) mice. Anti-HMGB1 antibody failed to provide protection in C3H/Hej mice, but successfully reduced damage in C3H/Ouj mice. Together, these results demonstrate that HMGB1 is an early mediator of injury and inflammation in liver I/R and implicates TLR4 as one of the receptors that is involved in the process.


2011 ◽  
Vol 26 (suppl 1) ◽  
pp. 8-13 ◽  
Author(s):  
Raimundo José Cunha Araújo Júnior ◽  
Raimundo Gerônimo da Silva Júnior ◽  
Marcelo Pinho Pessoa de Vasconcelos ◽  
Sérgio Botelho Guimarães ◽  
Paulo Roberto Leitão de Vasconcelos ◽  
...  

PURPOSE: To evaluate the effects of pre-conditioning with L-alanyl- glutamine (L-Ala-Gln) in rats subjected to total hepatic ischemia. METHODS: Thirty Wistar rats, average weight 300g, were randomly assigned to 3 groups (n=10): G-1 - Saline, G-2- L-Ala-Gln, G-3-control (Sham). G-1 and G-3 groups were treated with saline 2.0 ml or L-Ala-Gln (0.75mg/Kg) intraperitoneally (ip) respectively, 2 hours before laparotomy. Anesthetized rats were subjected to laparotomy and total hepatic ischemia (30 minutes) induced by by clamping of portal triad. Control group underwent peritoneal puncture, two hours before the sham operation (laparotomy only). At the end of ischemia (G1 and G2), the liver was reperfused for 60 minutes. Following reperfusion blood samples were collected for evaluation of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) levels. Liver (medium lobe) was removed for immunohistochemistry study with antibody for Caspase-3. RESULTS: It was found a significant decrease (p<0.05) of ALT levels (270.6 +40.8 vs 83.3 +5.5 - p <0.05), LDH (2079.0 +262.4 vs. 206.6 +16.2 - p <0.05) and Caspase-3 expression (6.72 +1.35 vs. 2.19 +1.14, p <0.05) in rats subjected to I / R, comparing the group treated with L-Ala -Gln with G-2. Also, the ALT level was significantly lower (P<0.05) in G-1 and G-2 groups than in G-3 (control group). CONCLUSION: L-Ala-Gln preconditioning in rats submitted to hepatic I/R significantly reduces ALT, LDH and Caspase-3 expression, suggesting hepatic protection.


Author(s):  
Alberto Calleri ◽  
Dorotea Roggio ◽  
Victor Navarro-Tableros ◽  
Nicola De Stefano ◽  
Chiara Pasquino ◽  
...  

AbstractHepatic ischemia-reperfusion injury (IRI) is observed in liver transplantation and hepato-biliary surgery and is associated with an inflammatory response. Human liver stem cell-derived extracellular vesicles (HLSC-EV) have been demonstrated to reduce liver damage in different experimental settings by accelerating regeneration and by modulating inflammation. The aim of the present study was to investigate whether HLSC-EV may protect liver from IRI in a mouse experimental model. Segmental IRI was obtained by selective clamping of intrahepatic pedicles for 90 min followed by 6 h of reperfusion. HLSC-EV were administered intravenously at the end of the ischemic period and histopathological and biochemical alterations were evaluated in comparison with controls injected with vehicle alone. Intra liver localization of labeled HLSC-EV was assessed by in in vivo Imaging System (IVIS) and the internalization into hepatocytes was confirmed by fluorescence analyses. As compared to the control group, administration of 3 × 109 particles (EV1 group) significantly reduced alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) release, necrosis extension and cytokines expression (TNF-α, CCL-2 and CXCL-10). However, the administration of an increased dose of HLSC-EV (7.5 × 109 particles, EV2 group) showed no significant improvement in respect to controls at enzyme and histology levels, despite a significantly lower cytokine expression. In conclusion, this study demonstrated that 3 × 109 HLSC-EV were able to modulate hepatic IRI by preserving tissue integrity and by reducing transaminases release and inflammatory cytokines expression. By contrast, a higher dose was ineffective suggesting a restricted window of biological activity.


Sign in / Sign up

Export Citation Format

Share Document