Dynamics of endogenous ATP7A (Menkes protein) in intestinal epithelial cells: copper-dependent redistribution between two intracellular sites

2007 ◽  
Vol 292 (4) ◽  
pp. G1181-G1194 ◽  
Author(s):  
L. Nyasae ◽  
R. Bustos ◽  
L. Braiterman ◽  
B. Eipper ◽  
A. Hubbard

We report for the first time on the copper-dependent behavior of endogenous ATP7A in two types of polarized intestinal epithelia, rat enterocytes in vivo and filter-grown Caco-2 cells, an accepted in vitro model of human small intestine. We used high-resolution, confocal immunofluorescence combined with quantitative cell surface biotinylation and found that the vast majority of endogenous ATP7A was localized intracellularly under all copper conditions. In copper-depleted cells, virtually all of the ATP7A localized to a post-TGN compartment, with <3% of the total protein detectable at the basolateral cell surface. When copper levels were elevated, ATP7A dispersed to the cell periphery in punctae whose pattern did not overlap with the steady-state distributions of post-Golgi, endosomal, or basolateral membrane markers; only ∼8–10% of the recovered ATP7A was detected at the basolateral cell surface. These results raise several questions regarding prevailing models of ATP7A dynamics and the mechanism of copper efflux.

2009 ◽  
Vol 296 (6) ◽  
pp. G1332-G1343 ◽  
Author(s):  
Annabelle Cesaro ◽  
Abakar Abakar-Mahamat ◽  
Patrick Brest ◽  
Sandra Lassalle ◽  
Eric Selva ◽  
...  

The acute phase of Crohn's disease (CD) is characterized by a large afflux of polymorphonuclear leukocytes (PMNL) into the mucosa and by the release of TNF-α. Conversion of inactive TNF-α into an active form requires the cleavage of a transmembrane TNF-α precursor by the TNF-α-converting enzyme (ADAM17), a protease mainly regulated by the tissue inhibitor of metalloproteinase 3 (TIMP3). The aim of the present study was to investigate in an in vitro model of PMNL transepithelial migration and in the intestinal mucosa of patients with CD the expression and regulation of ADAM17 and TIMP3 in intestinal epithelial cells (IEC). ADAM17 and TIMP3 expression was analyzed by Western blotting, RT-PCR, confocal microscopy, and immunohistochemistry by using the T84 model and digestive biopsies. ADAM17 expression in IEC was increased at a posttranscriptional level during the early phase (from 2 to 4 h) of PMNL transepithelial migration whereas TIMP3 was only increased 24 h later. TNF-α induced an early upregulation of ADAM17 in T84 cells, whereas PMNL adhesion, H2O2, or epithelial tight junction opening alone did not affect the amount of ADAM17. Immunohistochemistry of intestinal biopsies revealed that strong expression of ADAM17 was associated with a high activity of CD. In contrast, TIMP3 was very poorly expressed in these biopsies. ADAM17 and TIMP3 profiling did not correlated with the NOD2/CARD15 status. The ADAM17 activity was higher both in the early phase of PMNL transepithelial migration and in active CD. These results showed early posttranscriptional upregulation of ADAM17 in IEC linked to PMNL transepithelial migration and a high activity of CD.


2008 ◽  
Vol 191 (1) ◽  
pp. 178-186 ◽  
Author(s):  
Amber M. Johnson ◽  
Radhey S. Kaushik ◽  
David H. Francis ◽  
James M. Fleckenstein ◽  
Philip R. Hardwidge

ABSTRACT Given recent evidence suggesting that the heat-labile enterotoxin (LT) provides a colonization advantage for enterotoxigenic Escherichia coli (ETEC) in vivo, we hypothesized that LT preconditions the host intestinal epithelium for ETEC adherence. To test this hypothesis, we used an in vitro model of ETEC adherence to examine the role of LT in promoting bacterium-host interactions. We present data demonstrating that elaboration of LT promotes a significant increase in E. coli adherence. This phenotype is primarily dependent on the inherent ADP-ribosylation activity of this toxin, with a secondary role observed for the receptor-binding LT-B subunit. Rp-3′,5′-cyclic AMP (cAMP), an inhibitor of protein kinase A, was sufficient to abrogate LT's ability to promote subsequent bacterial adherence. Increased adherence was not due to changes in the surface expression of the host receptor for the K88ac adhesin. Evidence is also presented for a role for bacterial sensing of host-derived cAMP in promoting adherence to host cells.


Endocrinology ◽  
2012 ◽  
Vol 153 (7) ◽  
pp. 3526-3536 ◽  
Author(s):  
V. E. Smith ◽  
M. L. Read ◽  
A. S. Turnell ◽  
N. Sharma ◽  
G. D. Lewy ◽  
...  

Within the basolateral membrane of thyroid follicular epithelial cells, two transporter proteins are central to thyroid hormone (TH) biosynthesis and secretion. The sodium iodide symporter (NIS) delivers iodide from the bloodstream into the thyroid, and after TH biosynthesis, monocarboxylate transporter 8 (MCT8) mediates TH secretion from the thyroid gland. Pituitary tumor-transforming gene-binding factor (PBF; PTTG1IP) is a protooncogene that is up-regulated in thyroid cancer and that binds NIS and modulates its subcellular localization and function. We now show that PBF binds MCT8 in vitro, eliciting a marked shift in MCT8 subcellular localization and resulting in a significant reduction in the amount of MCT8 at the plasma membrane as determined by cell surface biotinylation assays. Colocalization and interaction between PBF and Mct8 was also observed in vivo in a mouse model of thyroid-specific PBF overexpression driven by a bovine thyroglobulin (Tg) promoter (PBF-Tg). Thyroidal Mct8 mRNA and protein expression levels were similar to wild-type mice. Critically, however, PBF-Tg mice demonstrated significantly enhanced thyroidal TH accumulation and reduced TH secretion upon TSH stimulation. Importantly, Mct8-knockout mice share this phenotype. These data show that PBF binds and alters the subcellular localization of MCT8 in vitro, with PBF overexpression leading to an accumulation of TH within the thyroid in vivo. Overall, these studies identify PBF as the first protein to interact with the critical TH transporter MCT8 and modulate its function in vivo. Furthermore, alongside NIS repression, PBF may thus represent a new regulator of TH biosynthesis and secretion.


2008 ◽  
Vol 19 (5) ◽  
pp. 1912-1921 ◽  
Author(s):  
Hiroki Fujita ◽  
Kotaro Sugimoto ◽  
Shuichiro Inatomi ◽  
Toshihiro Maeda ◽  
Makoto Osanai ◽  
...  

Ca2+ is absorbed across intestinal epithelial monolayers via transcellular and paracellular pathways, and an active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], is known to promote intestinal Ca2+ absorption. However, the molecules driving the paracellular Ca2+ absorption and its vitamin D dependency remain obscure. Because the tight junction proteins claudins are suggested to form paracellular channels for selective ions between neighboring cells, we hypothesized that specific intestinal claudins might facilitate paracellular Ca2+ transport and that expression of these claudins could be induced by 1α,25(OH)2D3. Herein, we show, by using RNA interference and overexpression strategies, that claudin-2 and claudin-12 contribute to Ca2+ absorption in intestinal epithelial cells. We also provide evidence showing that expression of claudins-2 and -12 is up-regulated in enterocytes in vitro and in vivo by 1α,25(OH)2D3 through the vitamin D receptor. These findings strongly suggest that claudin-2- and/or claudin-12-based tight junctions form paracellular Ca2+ channels in intestinal epithelia, and they highlight a novel mechanism behind vitamin D-dependent calcium homeostasis.


2001 ◽  
Vol 153 (5) ◽  
pp. 957-970 ◽  
Author(s):  
Mohamed Benharouga ◽  
Martin Haardt ◽  
Norbert Kartner ◽  
Gergely L. Lukacs

Impaired biosynthetic processing of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), a cAMP-regulated chloride channel, constitutes the most common cause of CF. Recently, we have identified a distinct category of mutation, caused by premature stop codons and frameshift mutations, which manifests in diminished expression of COOH-terminally truncated CFTR at the cell surface. Although the biosynthetic processing and plasma membrane targeting of truncated CFTRs are preserved, the turnover of the complex-glycosylated mutant is sixfold faster than its wild-type (wt) counterpart. Destabilization of the truncated CFTR coincides with its enhanced susceptibility to proteasome-dependent degradation from post-Golgi compartments globally, and the plasma membrane specifically, determined by pulse–chase analysis in conjunction with cell surface biotinylation. Proteolytic cleavage of the full-length complex-glycosylated wt and degradation intermediates derived from both T70 and wt CFTR requires endolysosomal proteases. The enhanced protease sensitivity in vitro and the decreased thermostability of the complex-glycosylated T70 CFTR in vivo suggest that structural destabilization may account for the increased proteasome susceptibility and the short residence time at the cell surface. These in turn are responsible, at least in part, for the phenotypic manifestation of CF. We propose that the proteasome-ubiquitin pathway may be involved in the peripheral quality control of other, partially unfolded membrane proteins as well.


1998 ◽  
Vol 66 (5) ◽  
pp. 2310-2318 ◽  
Author(s):  
Debra L. Weinstein ◽  
Barbara L. O’Neill ◽  
David M. Hone ◽  
Eleanor S. Metcalf

ABSTRACT Salmonella enterica serovar Typhi (hereafter referred to as S. typhi) is a host-restricted pathogen that adheres to and invades the distal ileum and subsequently disseminates to cause typhoid fever in humans. However, S. typhi appears to be avirulent in small animals. In contrast, other pathogenic salmonellae, such as S. enterica serovars Typhimurium and Dublin (S. typhimurium and S. dublin, respectively), typically cause localized gastroenteritis in humans but have been used as models for typhoid fever because these organisms cause a disease in susceptible rodents that resembles human typhoid. In vivo, S. typhi has been demonstrated to attach to and invade murine M cells but is rapidly cleared from the Peyer’s patches without destruction of the M cells. In contrast, invasion of M cells byS. typhimurium is accompanied by destruction of these M cells and subsequently sloughing of the epithelium. These data have furthered our view that the early steps in the pathogenesis of typhoidal and nontyphoidal Salmonella serovars are distinct. To extend this concept, we have utilized an in vitro model to evaluate three parameters of initial host-pathogen interactions: adherence of three Salmonella serovars to human and murine small intestinal epithelial cell (IEC) lines, the capacity of these salmonellae to invade IECs, and the ability of the bacteria to induce interleukin-6 (IL-6) in these cell lines as a measure of host cell activation and the host acute-phase response. The results demonstrate that S. typhi adheres to and invades human small IECs better than either S. typhimurium or S. dublin. Interestingly, invA and invE null mutants ofS. typhi are able neither to adhere to nor to invade IECs, unlike S. typhimurium invA and invE mutants, which adhere to but cannot invade IECs. S. typhi also induces significantly greater quantities of IL-6 in human small IEC lines than either of the other two Salmonella serovars. These findings suggest that differential host cytokine responses to bacterial pathogens may play an important role in the pathological sequelae that follow infection. Importantly, S. typhimuriumdid not induce IL-6 in murine IECs. Since S. typhimuriuminfection in mice is often used as a model of typhoid fever, these findings suggest that, at least in this case, the mouse model does not reflect the human disease. Taken together, our studies indicate that (i) marked differences occur in the initial steps of S. typhi, S. typhimurium, and S. dublinpathogenesis, and (ii) conclusions about S. typhipathogenesis that have been drawn from the mouse model of typhoid fever should be interpreted conservatively.


1998 ◽  
Vol 66 (9) ◽  
pp. 4237-4243 ◽  
Author(s):  
Beth A. McCormick ◽  
Andrew M. Siber ◽  
Anthony T. Maurelli

ABSTRACT Attachment of an array of enteric pathogens to epithelial surfaces is accompanied by recruitment of polymorphonuclear leukocytes (PMN) across the intestinal epithelium. In this report, we examine howShigella-intestinal epithelium interactions evoke the mucosal inflammatory response. We modeled these interactions in vitro by using polarized monolayers of the human intestinal epithelial cell line, T84, isolated human PMNs, and Shigella flexneri. We show that Shigella attachment to T84-cell basolateral membranes was a necessary component in the signaling cascade for induction of basolateral-to-apical directed transepithelial PMN migration, the direction of PMN transepithelial migration in vivo. In contrast, attachment of Shigella to the T84-cell apical membrane failed to stimulate a directed PMN transepithelial migration response. Importantly, the ability of Shigella to induce PMN migration across epithelial monolayers was dependent on the presence of the 220-kb virulence plasmid. Moreover, examination ofShigella genes necessary to signal subepithelial neutrophils established the requirement of a functional type III secretion system. Our results indicate that the ability ofShigella to elicit transepithelial signaling to neutrophils from the basolateral membrane of epithelial cells represents a mechanism involved in Shigella-elicited enteritis in humans.


2005 ◽  
Vol 289 (3) ◽  
pp. G599-G606 ◽  
Author(s):  
Wenlin Deng ◽  
Mary Jane Viar ◽  
Leonard R. Johnson

Our group has previously shown that polyamine depletion delays apoptosis in rat intestinal epithelial (IEC-6) cells (Ray RM, Viar MJ, Yuan Q, and Johnson LR , Am J Physiol Cell Physiol 278: C480–C489, 2000). Here, we demonstrate that polyamine depletion inhibits γ-irradiation-induced apoptosis in vitro and in vivo. Pretreatment of IEC-6 cells with 5 mM α-difluoromethylornithine (DFMO) for 4 days significantly reduced radiation-induced caspase-3 activity and DNA fragmentation. This protective effect was prevented by the addition of 10 μM exogenous putrescine. Radiation exposure to mice resulted in a high frequency of apoptosis over cells positioned fourth to seventh in crypt-villus units. Pretreatment of mice with 2% DFMO in drinking water significantly reduced apoptotic cells from ∼2.75 to 1.61 per crypt-villus unit, accompanied by significant decreases in caspase-3 levels. Further examination showed that DFMO pretreatment inhibited the radiation-induced increase in the proapoptotic protein Bax. Moreover, DFMO pretreatment significantly enhanced the intestinal crypt survival rate by 2.1-fold subsequent to radiation and ameliorated mucosal structural damage. We conclude that polyamine depletion by DFMO inhibits γ-irradiation-induced apoptosis of intestinal epithelial cells both in vitro and in vivo through inhibition of Bax and caspase-3 activity, which leads to attenuation of radiation-inflicted intestinal injury. These data indicate that DFMO may be therapeutically useful to counteract the gastrointestinal toxicity caused by chemoradiotherapy. This is the first demonstration that polyamines are required for apoptosis in vivo.


2021 ◽  
Vol 22 (5) ◽  
pp. 2530
Author(s):  
Bijean D. Ford ◽  
Diego Moncada Giraldo ◽  
Camilla Margaroli ◽  
Vincent D. Giacalone ◽  
Milton R. Brown ◽  
...  

Cystic fibrosis (CF) lung disease is dominated by the recruitment of myeloid cells (neutrophils and monocytes) from the blood which fail to clear the lung of colonizing microbes. In prior in vitro studies, we showed that blood neutrophils migrated through the well-differentiated lung epithelium into the CF airway fluid supernatant (ASN) mimic the dysfunction of CF airway neutrophils in vivo, including decreased bactericidal activity despite an increased metabolism. Here, we hypothesized that, in a similar manner to neutrophils, blood monocytes undergo significant adaptations upon recruitment to CFASN. To test this hypothesis, primary human blood monocytes were transmigrated in our in vitro model into the ASN from healthy control (HC) or CF subjects to mimic in vivo recruitment to normal or CF airways, respectively. Surface phenotype, metabolic and bacterial killing activities, and transcriptomic profile by RNA sequencing were quantified post-transmigration. Unlike neutrophils, monocytes were not metabolically activated, nor did they show broad differences in activation and scavenger receptor expression upon recruitment to the CFASN compared to HCASN. However, monocytes recruited to CFASN showed decreased bactericidal activity. RNASeq analysis showed strong effects of transmigration on monocyte RNA profile, with differences between CFASN and HCASN conditions, notably in immune signaling, including lower expression in the former of the antimicrobial factor ISG15, defensin-like chemokine CXCL11, and nitric oxide-producing enzyme NOS3. While monocytes undergo qualitatively different adaptations from those seen in neutrophils upon recruitment to the CF airway microenvironment, their bactericidal activity is also dysregulated, which could explain why they also fail to protect CF airways from infection.


Sign in / Sign up

Export Citation Format

Share Document