The homeodomain transcription factors Cdx1 and Cdx2 induce E-cadherin adhesion activity by reducing β- and p120-catenin tyrosine phosphorylation

2007 ◽  
Vol 293 (1) ◽  
pp. G54-G65 ◽  
Author(s):  
Toshihiko Ezaki ◽  
Rong-Jun Guo ◽  
Hong Li ◽  
Albert B. Reynolds ◽  
John P. Lynch

The homeodomain transcription factors Cdx1 and Cdx2 are regulators of intestine-specific gene expression. They also regulate intestinal cell differentiation and proliferation; however, these effects are poorly understood. Previously, we have shown that expression of Cdx1 or Cdx2 in human Colo 205 cells induces a mature colonocyte morphology characterized by the induction of a polarized, columnar shape with apical microvilli and strong cell-cell adhesion. To elucidate the mechanism underlying this phenomenon, we investigated the adherens junction complex. Cdx1 or Cdx2 expression reduced Colo 205 cell migration and invasion in vitro, suggesting a physiologically significant change in cadherin function. However, Cdx expression did not significantly effect E-cadherin, α-, β-, or γ-catenin, or p120-catenin protein levels. Additionally, no alteration in their intracellular distribution was observed. Cdx expression did not alter the coprecipitation of β-catenin with E-cadherin; however, it did reduce p120-catenin-E-cadherin coprecipitation. Tyrosine phosphorylation of β- and p120-catenin is known to disrupt E-cadherin-mediated cell adhesion and is associated with robust p120-catenin/E-cadherin interactions. We specifically investigated β- and p120-catenin for tyrosine phosphorylation and found that it was significantly diminished by Cdx1 or Cdx2 expression. We restored β- and p120-catenin tyrosine phosphorylation in Cdx2-expressing cells by knocking down the expression of protein tyrosine phosphatase 1B and noted a significant decline in cell-cell adhesion. We conclude that Cdx expression in Colo 205 cells induces E-cadherin-dependent cell-cell adhesion by reducing β- and p120-catenin tyrosine phosphorylation. Ascertaining the mechanism for this novel Cdx effect may improve our understanding of the regulation of cell-cell adhesion in the colonic epithelium.

2004 ◽  
Vol 287 (1) ◽  
pp. G104-G114 ◽  
Author(s):  
Matthew S. Keller ◽  
Toshihiko Ezaki ◽  
Rong-Jun Guo ◽  
John P. Lynch

A mature columnar intestinal epithelium develops late in embryogenesis and is maintained throughout the life of the organism. Although the mechanisms driving intestine-specific gene expression have been well studied, those promoting the acquisition of cell-cell junctions, columnar morphogenesis, and polarization have been less studied. The Cdx homeodomain transcription factors (Cdx1 and Cdx2) regulate intestine-specific gene expression and intestinal epithelial differentiation. We report here that Cdx expression induces E-cadherin activity and cell-cell adhesion in human COLO 205 cancer cells. Within days of Cdx1 or Cdx2 expression, a new homotypic cell-cell adhesion phenotype is induced. This is a specific response to Cdx, inasmuch as a Cdx1 mutant failed to elicit the effect. Additionally, Cdx-expressing COLO 205 cells demonstrate a reduced proliferative capacity and an increase in the mRNA expression of differentiation-associated genes. Electron micrographs of these cells demonstrate induction of tight, adherens, and desmosomal junctions, as well as a columnar shape and apical microvilli. Investigations of the adhesion phenotype determined that it was Ca2+dependent and could be blocked by an E-cadherin-blocking antibody. However, E-cadherin protein levels and intracellular distribution were unchanged. Cdx expression restored the ability of the cell membranes to adhere and undergo compaction. We conclude that Cdx1 or Cdx2 expression is sufficient to induce an E-cadherin-dependent adhesion of COLO 205 cells. This adhesion is associated with polarization and cell-cell membrane compaction, as well as induction of a differentiated gene-expression pattern. Ascertaining the mechanism for this novel Cdx effect may yield insight into the development of mature colonic epithelium.


2010 ◽  
Vol 30 (13) ◽  
pp. 3262-3274 ◽  
Author(s):  
Oxana M. Tsygankova ◽  
Changqing Ma ◽  
Waixing Tang ◽  
Christopher Korch ◽  
Michael D. Feldman ◽  
...  

ABSTRACT Rap1GAP expression is decreased in human tumors. The significance of its downregulation is unknown. We show that Rap1GAP expression is decreased in primary colorectal carcinomas. To elucidate the advantages conferred on tumor cells by loss of Rap1GAP, Rap1GAP expression was silenced in human colon carcinoma cells. Suppressing Rap1GAP induced profound alterations in cell adhesion. Rap1GAP-depleted cells exhibited defects in cell/cell adhesion that included an aberrant distribution of adherens junction proteins. Depletion of Rap1GAP enhanced adhesion and spreading on collagen. Silencing of Rap expression normalized spreading and restored E-cadherin, β-catenin, and p120-catenin to cell/cell contacts, indicating that unrestrained Rap activity underlies the alterations in cell adhesion. The defects in adherens junction protein distribution required integrin signaling as E-cadherin and p120-catenin were restored at cell/cell contacts when cells were plated on poly-l-lysine. Unexpectedly, Src activity was increased in Rap1GAP-depleted cells. Inhibition of Src impaired spreading and restored E-cadherin at cell/cell contacts. These findings provide the first evidence that Rap1GAP contributes to cell/cell adhesion and highlight a role for Rap1GAP in regulating cell/matrix and cell/cell adhesion. The frequent downregulation of Rap1GAP in epithelial tumors where alterations in cell/cell and cell/matrix adhesion are early steps in tumor dissemination supports a role for Rap1GAP depletion in tumor progression.


2020 ◽  
pp. mbc.E20-05-0321
Author(s):  
Maree C. Faux ◽  
Lauren E. King ◽  
Serena R. Kane ◽  
Christopher Love ◽  
Oliver M. Sieber ◽  
...  

The APC tumor suppressor protein is associated with the regulation of Wnt signaling, however APC also controls other cellular processes including the regulation of cell adhesion and migration. The expression of full-length APC in SW480 colorectal cancer cells (SW480+APC) not only reduces Wnt signaling, but increases membrane E-cadherin and restores cell-cell adhesion. This report describes the effects of full-length, wild-type APC (fl-APC) on cell-cell adhesion genes and p120-catenin isoform switching in SW480 colon cancer cells: fl-APC increased the expression of genes implicated in cell-cell adhesion, whereas the expression of negative regulators of E-cadherin were decreased. Analysis of cell-cell adhesion-related proteins in SW480+APC cells revealed an increase in p120-catenin isoform 3A; similarly, depletion of APC altered the p120-catenin protein isoform profile. Expression of ESRP1 (epithelial splice regulatory protein 1) is increased in SW480+APC cells and its depletion results in reversion to the p120-catenin isoform 1A phenotype and reduced cell-cell adhesion. ESRP1 transcript is reduced in primary CRC and its expression correlates with the level of APC. Pyrvinium pamoate, which inhibits Wnt signaling, promotes ESRP1 expression. We conclude that re-expression of APC restores cell-cell adhesion gene and post-transcriptional regulatory programs leading to p120-catenin isoform switching and associated changes in cell-cell adhesion.


Cell ◽  
2010 ◽  
Vol 141 (1) ◽  
pp. 117-128 ◽  
Author(s):  
Noboru Ishiyama ◽  
Seung-Hye Lee ◽  
Shuang Liu ◽  
Guang-Yao Li ◽  
Matthew J. Smith ◽  
...  

2005 ◽  
Vol 173 (4S) ◽  
pp. 170-170
Author(s):  
Maxine G. Tran ◽  
Miguel A. Esteban ◽  
Peter D. Hill ◽  
Ashish Chandra ◽  
Tim S. O'Brien ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
pp. 1-17
Author(s):  
Sarah Alsharif ◽  
Pooja Sharma ◽  
Karina Bursch ◽  
Rachel Milliken ◽  
Van Lam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document