Ion transport in goby intestine: cellular mechanism of urotensin II stimulation

1985 ◽  
Vol 249 (2) ◽  
pp. G284-G293
Author(s):  
C. A. Loretz ◽  
M. E. Howard ◽  
A. J. Siegel

The Na- and Cl-absorbing goby posterior intestinal epithelium is composed predominantly of mitochondria-rich, tall columnar cells. Glass intracellular microelectrode recording technique was applied to absorptive cells of this relatively leaky epithelium to measure apical cell membrane potential difference (psi mc) and apical membrane fractional resistance. As determined by ion-substitution studies, absorptive cells are characterized by a large, Ba2+-inhibitable apical K conductance, which is a major factor determining psi mc and smaller Cl and Na conductances. Inhibition of the apical Na-Cl-coupled influx directly by furosemide or indirectly by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine produced hyperpolarization of psi mc, consistent with the greater apical membrane conductance to Cl than Na. The urophysial neurosecretory peptide urotensin II, which stimulates Na-Cl-coupled absorption, markedly depolarized psi mc in posterior intestinal tissues from 5% seawater-adapted gobies. This response is consistent with a stimulatory effect of urotensin II at the apical membrane carrier rather than at the basolateral Na-K-ATPase. Urotensin II is without effect on psi mc in tissues from seawater-adapted fish and somatostatin, a natural analogue of urotensin II, is without effect on tissues from fish adapted to either salinity. This specificity parallels that determined using radiotracer fluxes.

1995 ◽  
Vol 268 (2) ◽  
pp. C425-C433 ◽  
Author(s):  
M. J. Stutts ◽  
E. R. Lazarowski ◽  
A. M. Paradiso ◽  
R. C. Boucher

Luminal extracellular ATP evoked a bumetanide-sensitive short-circuit current in cultured T84 cell epithelia (90.2 +/- 18.2 microA/cm2 at 100 microM ATP, apparent 50% effective concentration, 11.5 microM). ATP appeared to increase the Cl- conductance of the apical membrane but not the driving force for Cl- secretion determined by basolateral membrane K+ conductance. Specifically, the magnitude of Cl- secretion stimulated by ATP was independent of basal current, and forskolin pretreatment abolished subsequent stimulation of Cl- secretion by ATP. Whereas ATP stimulated modest production of adenosine 3',5'-cyclic monophosphate (cAMP) by T84 cells, ATP caused smaller increases in intracellular Ca2+ and inositol phosphate activities than the Ca(2+)-signaling Cl- secretagogue carbachol. An inhibitor of 5'-nucleotidase, alpha,beta-methyleneadenosine 5'-diphosphate, blocked most of the response to luminal ATP. The adenosine receptor antagonist 8-(p-sulfophenyl)theophylline blocked both the luminal ATP-dependent generation of cAMP and Cl- secretion when administered to the luminal but not submucosal bath. These results demonstrate that the Cl- secretion stimulated by luminal ATP is mediated by a A2-adenosine receptor located on the apical cell membrane. Thus metabolism of extracellular ATP to adenosine regulates the activity of cystic fibrosis transmembrane conductor regulator (CFTR) in the apical membrane of polarized T84 cells.


1985 ◽  
Vol 248 (6) ◽  
pp. F858-F868 ◽  
Author(s):  
S. C. Sansom ◽  
R. G. O'Neil

The effects of mineralocorticoid (DOCA) treatment of rabbits on the Na+ and K+ transport properties of the cortical collecting duct apical cell membrane were assessed using microelectrode techniques. Applying standard cable techniques and equivalent circuit analysis to the isolated perfused tubule, the apical cell membrane K+ and Na+ currents and conductances could be estimated from the selective effects of the K+ channel blocker Ba2+ and the Na+ channel blocker amiloride on the apical membrane; amiloride treatment was observed also to decrease the tight junction conductance by an average of 10%. After 1 day of DOCA treatment, the Na+ conductance and current (Na+ influx) of the apical cell membrane doubled and remained elevated with prolonged treatment for up to 2 wk. The apical cell membrane K+ conductance was not influenced after 1 day, although the K+ current (K+ secretion) increased significantly due to an increased driving force for K+ exit. After 4 days or more of DOCA treatment the K+ conductance doubled, resulting in a further modest stimulation in K+ secretion. After 2 wk of DOCA treatment the tight junction conductance decreased by near 30%, resulting in an additional hyperpolarization of the transepithelial voltage, thereby favoring K+ secretion. It is concluded that the acute effect (within 1 day) of mineralocorticoids on Na+ and K+ transport is an increase in the apical membrane Na+ conductance followed by delayed chronic alterations in the apical membrane K+ conductance and tight junction conductance, thereby resulting in a sustained increased capacity of the tubule to reabsorb Na+ and secrete K+.


1997 ◽  
Vol 273 (1) ◽  
pp. G204-G216 ◽  
Author(s):  
L. al-Nakkash ◽  
C. U. Cotton

Secretion of salt and water by the epithelial cells that line pancreatic ducts depends on activation of apical membrane Cl- conductance. In the present study, we characterized two types of Cl- conductances present in the apical cell membrane of bovine pancreatic duct epithelial cells. Primary cultures of bovine main pancreatic duct epithelium and an immortalized cell line (BPD1) derived from primary cultures were used. Elevation of intracellular adenosine 3',5'-cyclic monophosphate (cAMP) or Ca2+ in intact monolayers of duct epithelium induced sustained anion secretion. Agonist-induced changes in plasma membrane Cl- permeability were accessed by 36 Cl- efflux, whole cell current recording, and measurements of transepithelial Cl- current across permeabilized epithelial monolayers. Elevation of intracellular cAMP elicited a sustained increase in Cl- permeability, whereas elevation of intracellular Ca2+ induced only a transient increase in Cl- permeability. Ca(2+)- but not cAMP-induced increases in Cl- permeability were abolished by preincubation of cells with the Ca2+ buffer 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl) ester (BAPTA-AM). N-phenylanthranilic acid (DPC; 1 mM) and glibenclamide (100 microM), but not 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; 500 microM), inhibited the cAMP-induced increase in Cl- permeability. In contrast, DPC and DIDS, but not glibenclamide, inhibited the Ca(2+)-induced increase in Cl- permeability. We conclude from these experiments that bovine pancreatic duct epithelial cells express at least two types of Cl- channels, cAMP and Ca2+ activated, in the apical cell membrane. Because the Ca(2+)-activated increase in Cl- permeability is transient, the extent to which this pathway contributes to sustained anion secretion by the ductal epithelium remains to be determined.


1984 ◽  
Vol 247 (2) ◽  
pp. F291-F302 ◽  
Author(s):  
S. C. Sansom ◽  
E. J. Weinman ◽  
R. G. O'Neil

The chloride-conductive properties of the isolated rabbit cortical collecting duct were assessed with microelectrode techniques. The transepithelial, apical, and basolateral membrane potential differences, Vte, Va, and Vb, respectively, were monitored continuously along with periodic measurements of the transepithelial conductance, Gte, and fractional resistance, fRa (ratio of apical to apical plus basolateral membrane resistance). Active transport was eliminated in all experiments by luminal addition of 50 microM amiloride in HCO3-free solutions. Upon reducing the chloride activity in the bath (gluconate replacement), there was a marked depolarization of Vb and decrease in Gte and fRa, demonstrating a major dependence of the basolateral membrane conductance on the bath chloride activity. However, a significant K+ conductance at that barrier was also apparent since raising the bath K+ concentration caused an increase in Gte and fRa and depolarization of Vb. Lowering the chloride activity of the perfusate caused a consistent decrease of Gte but not of fRa, effects consistent with a high C1- conductance of the tight junction and little, if any, apical membrane C1- conductance. By use of the C1- -dependent conductances, the C1- permeabilities at equilibrium were estimated to be near 1.0 X 10(-5) cm X s-1 for the tight junction, PtiC1, and 5 X 10(-5) cm X s-1 for the basolateral cell membrane, PbC1. It is concluded that the paracellular pathway provides a major route for transepithelial C1- transport. Furthermore, since the isotopically measured C1- permeability is severalfold greater than PtiC1, a significant transcellular flux of C1- must exist, implicating a neutral exchange mechanism at the apical cell membrane in series with the high basolateral membrane C1- conductance.


1991 ◽  
Vol 260 (5) ◽  
pp. C1000-C1011 ◽  
Author(s):  
G. Saccomani ◽  
C. G. Psarras ◽  
P. R. Smith ◽  
K. L. Kirk ◽  
R. L. Shoemaker

The electrical properties of the apical membrane of isolated rabbit parietal cells were studied using the patch-clamp technique. The apical membrane of the parietal cells plated on Matrigel and maintained in culture conditions was identified by lectin-binding studies. Cell-attached and excised inside-out patches from 10(-4) M cimetidine-treated parietal cells infrequently contained Cl- channels (9% of the patches). A single class of voltage-dependent outwardly rectifying Cl- channels with 24 +/- 1-pS conductance was observed in 75% of the patches from cells stimulated (acid secreting) by 10(-4) M histamine. Other anions passed through these channels with a permeability sequence of I- (1.2) greater than Br- (1.1) greater than or equal to Cl- (1.0) greater than NO3- (0.7) greater than SO4(2-) (0.1), but there was a very low permeability for Na+ or K+ (PCl-/PNa+ or PCl-/PK+ greater than 5). In inside-out patch configurations the Cl- channel was insensitive to Ba2+ and stilbene derivatives but was inhibited by diphenylamine-2-carboxylic acid in a manner characteristic of a reversible open-channel blocker. It is concluded that H2-receptor agonist stimulation of acid secretion by rabbit parietal cells activates Cl- channels in the apical cell membrane.


1994 ◽  
Vol 267 (1) ◽  
pp. G119-G128 ◽  
Author(s):  
G. G. King ◽  
W. E. Lohrmann ◽  
J. W. Ickes ◽  
G. M. Feldman

Colonocytes must regulate intracellular pH (pHi) while they transport H+ and HCO3-. To investigate the membrane transport processes involved in pHi regulation, colonocyte pHi was measured with 2,'7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) in intact segments of rat distal colon mounted on a holder that fits into a standard fluorometer cuvette and allows independent superfusion of mucosal and serosal surfaces. When NCECF-acetoxymethyl ester was in the mucosal solution only, BCECF loaded surface colonocytes with a high degree of selectivity. In HEPES-buffered solutions, basal pHi was 7.31 +/- 0.01 (n = 68), and pHi was dependent on extracellular Na+. Cells acidified in Na(+)-free solution, and pHi rapidly corrected when Na+ was returned. pHi recovered at 0.22 +/- 0.01 pH/min (n = 6) when Na+ was introduced into the mucosal solution and at 0.02 +/- 0.01 pH/min (n = 7) when Na+ was absent from the mucosal solution. The presence or absence of Na+ in the serosal solution did not affect pHi. This indicated that the Na(+)-dependent pHi recovery process is located in the apical cell membrane, but not in the basolateral membrane. Because amiloride (1 mM) inhibited Na(+)-dependent pHi recovery by 75%, Na+/H+ exchange appears to be present in the apical membrane. Because Na(+)-independent pHi recovery was not affected by K(+)-free media, 50 microM SCH-28080, 100 nM bafilomycin A1, or Cl(-)-free media, this transport mechanism does not involve a gastriclike H(+)-K(+)-ATPase, a vacuolar H(+)-ATPase, or a Cl-/base exchanger. In summary, pHi was selectively measured in surface colonocytes by this technique. In these cells, the Na+/H+ exchange activity involved in pHi regulation was detected in the apical membrane, but not in the basolateral membrane.


1959 ◽  
Vol 5 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Sam L. Clark

Proteins and colloidal materials, administered orally to suckling rats and mice, were ingested by columnar absorptive cells of the jejunum and ileum, but not of the duodenum. Bovine gamma globulin and ovalbumin were identified in the apical cytoplasm by staining with fluorescent antibody; trypan blue, Evans blue, saccharated iron oxide, and colloidal gold were detected intracellularly by their color, specific staining, and appearance in the electron microscope. Each substance was segregated in membrane-enclosed vacuoles, apparently part of a system of potentially interconnecting vacuoles and tubules in the apical cytoplasm which is continuous in places with the apical cell membrane. We postulate that ingestion of foreign materials was accomplished by pinocytosis, that is, by invagination of the apical cell membrane to form vacuoles containing material from the intestinal lumen. Approximately 18 days after birth columnar absorptive cells lost the ability to ingest proteins and colloids, and no longer contained large vacuoles and numerous tubules. At this age rats and mice lose the ability to absorb antibodies from the intestine in an immunologically intact form, and we conclude that cellular ingestion is part of the mechanism of absorption of intact proteins in suckling animals. Particulate fat apparently is absorbed in both newborn and adult animals by micropinocytosis. Thus adult animals may not have lost the capacity for pinocytosis, but rather have become selective as to what substances provoke it. Cortisone acetate, administered subcutaneously to rats 8 to 10 days old alters the columnar absorptive cells within 72 hours so that they resemble the cells in adult animals and no longer ingest proteins.


1994 ◽  
Vol 267 (1) ◽  
pp. R107-R114
Author(s):  
V. Lyall ◽  
T. S. Belcher ◽  
J. H. Miller ◽  
T. U. Biber

Intracellular pH (pHi), apical membrane potential (Va), and fractional apical membrane resistance (FRa) were measured in principal cells of isolated frog skin (Rana pipiens) with double-barreled microelectrodes under short-circuit conditions. Basolateral exposure to 10 mU/ml arginine vasotocin (AVT) depolarized Va by 30 mV, decreased FRa by 33%, increased short-circuit current (Isc) by 17 microA, and increased pHi by 0.17 pH units. The response of Va, Isc, and pHi occurred concurrently. Forskolin, theophylline, and 8-(4-chlorophenyl-thio)-adenosine 3',5'-cyclic monophosphate caused similar changes in Va, Isc, and pHi. The enhanced response of Isc, Va, and FRa to short pulses of apical amiloride applied during AVT or cAMP exposure suggests an increase in apical Na+ conductance. The presence of cAMP agonists also enhanced the response of pHi to amiloride. We conclude that the AVT- and cAMP-induced increase in Na+ transport across the apical cell membrane is associated with a change in pHi. These data are consistent with the hypothesis that changes in pHi may play a role in the second messenger cascade initiated by the antidiuretic hormone.


1986 ◽  
Vol 251 (2) ◽  
pp. F173-F187 ◽  
Author(s):  
P. R. Steinmetz

The turtle bladder contains transport systems for active sodium absorption, electrogenic proton secretion, and bicarbonate secretion (coupled to chloride absorption) that are functionally separate and occur in specialized epithelial cells. Maneuvers that alter the intracellular acid-base state, such as changes in PCO2, cause marked changes in the apical membrane area of alpha-type carbonic anhydrase (CA) cells by addition or retrieval of membrane vesicles but have no effect on the granular cells that transport sodium. The apical cell membrane of alpha-CA cells contains characteristic rod-shaped intramembrane particles (RSP) by freeze fracture and is coated on its cytoplasmic side with studs. A subpopulation of CA cells (beta-type), which is characterized by apical microvilli, fails to exhibit an apical response to CO2 stimulation and does not reveal RSPs or studs at its apical membranes; instead, these elements can be demonstrated at the basolateral membrane. The reversal in the polarity of these elements as well as physiological evidence suggest that beta-type cells are responsible for bicarbonate secretion. Structure-function studies of CO2 stimulation of H+ secretion by alpha-CA cells indicate that the secretion rate (JH) correlates with apical membrane area and numbers of RSPs. The view that RSPs represent arrays of transmembrane channels and that studs represent catalytic units of H+ pumps is supported by quantitative considerations but remains to be proven. Urinary acidification is regulated not only by changes in the number of H+ pumps but also by the intrinsic properties of the H+ pump itself. For a given pump population, JH is closely controlled by the delta microH across the active transport pathway.


Sign in / Sign up

Export Citation Format

Share Document