Surfing the lipid bilayer: how basolateral insulin receptors regulate Na+ channels in the apical cell membrane. Focus on “Real-time three-dimensional imaging of lipid signal transduction: apical membrane insertion of epithelial Na+ channels”

2004 ◽  
Vol 287 (6) ◽  
pp. C1539-C1540 ◽  
Author(s):  
Florian Lang
2004 ◽  
Vol 287 (6) ◽  
pp. C1569-C1576 ◽  
Author(s):  
Bonnie L. Blazer-Yost ◽  
Judith C. Vahle ◽  
Jason M. Byars ◽  
Robert L. Bacallao

In the distal tubule, Na+ resorption is mediated by epithelial Na+ channels (ENaC). Hormones such as aldosterone, vasopressin, and insulin modulate ENaC membrane targeting, assembly, and/or kinetic activity, thereby regulating salt and water homeostasis. Insulin binds to a receptor on the basal membrane to initiate a signal transduction cascade that rapidly results in an increase in apical membrane ENaC. Current models of this signaling pathway envision diffusion of signaling intermediates from the basal to the apical membrane. This necessitates diffusion of several high-molecular-weight signaling elements across a three-dimensional space. Transduction of the insulin signal involves the phosphoinositide pathway, but how and where this lipid-based signaling pathway controls ENaC activity is not known. We used tagged channels, biosensor lipid probes, and intravital imaging to investigate the role of lipids in insulin-stimulated Na+ flux. Insulin-stimulated delivery of intracellular ENaC to apical membranes was concurrent with plasma membrane-limited changes in lipid composition. Notably, in response to insulin, phosphatidylinositol 3,4,5-trisphosphate (PIP3) formed in the basolateral membrane, rapidly diffused within the bilayer, and crossed the tight junction to enter the apical membrane. This novel signaling pathway takes advantage of the fact that the lipids of the plasma membrane's inner leaflet are not constrained by the tight junction. Therefore, diffusion of PIP3 as a signal transduction intermediate occurs within a planar surface, thus facilitating swift responses and confining and controlling the signaling pathway.


1995 ◽  
Vol 268 (2) ◽  
pp. C425-C433 ◽  
Author(s):  
M. J. Stutts ◽  
E. R. Lazarowski ◽  
A. M. Paradiso ◽  
R. C. Boucher

Luminal extracellular ATP evoked a bumetanide-sensitive short-circuit current in cultured T84 cell epithelia (90.2 +/- 18.2 microA/cm2 at 100 microM ATP, apparent 50% effective concentration, 11.5 microM). ATP appeared to increase the Cl- conductance of the apical membrane but not the driving force for Cl- secretion determined by basolateral membrane K+ conductance. Specifically, the magnitude of Cl- secretion stimulated by ATP was independent of basal current, and forskolin pretreatment abolished subsequent stimulation of Cl- secretion by ATP. Whereas ATP stimulated modest production of adenosine 3',5'-cyclic monophosphate (cAMP) by T84 cells, ATP caused smaller increases in intracellular Ca2+ and inositol phosphate activities than the Ca(2+)-signaling Cl- secretagogue carbachol. An inhibitor of 5'-nucleotidase, alpha,beta-methyleneadenosine 5'-diphosphate, blocked most of the response to luminal ATP. The adenosine receptor antagonist 8-(p-sulfophenyl)theophylline blocked both the luminal ATP-dependent generation of cAMP and Cl- secretion when administered to the luminal but not submucosal bath. These results demonstrate that the Cl- secretion stimulated by luminal ATP is mediated by a A2-adenosine receptor located on the apical cell membrane. Thus metabolism of extracellular ATP to adenosine regulates the activity of cystic fibrosis transmembrane conductor regulator (CFTR) in the apical membrane of polarized T84 cells.


1985 ◽  
Vol 248 (6) ◽  
pp. F858-F868 ◽  
Author(s):  
S. C. Sansom ◽  
R. G. O'Neil

The effects of mineralocorticoid (DOCA) treatment of rabbits on the Na+ and K+ transport properties of the cortical collecting duct apical cell membrane were assessed using microelectrode techniques. Applying standard cable techniques and equivalent circuit analysis to the isolated perfused tubule, the apical cell membrane K+ and Na+ currents and conductances could be estimated from the selective effects of the K+ channel blocker Ba2+ and the Na+ channel blocker amiloride on the apical membrane; amiloride treatment was observed also to decrease the tight junction conductance by an average of 10%. After 1 day of DOCA treatment, the Na+ conductance and current (Na+ influx) of the apical cell membrane doubled and remained elevated with prolonged treatment for up to 2 wk. The apical cell membrane K+ conductance was not influenced after 1 day, although the K+ current (K+ secretion) increased significantly due to an increased driving force for K+ exit. After 4 days or more of DOCA treatment the K+ conductance doubled, resulting in a further modest stimulation in K+ secretion. After 2 wk of DOCA treatment the tight junction conductance decreased by near 30%, resulting in an additional hyperpolarization of the transepithelial voltage, thereby favoring K+ secretion. It is concluded that the acute effect (within 1 day) of mineralocorticoids on Na+ and K+ transport is an increase in the apical membrane Na+ conductance followed by delayed chronic alterations in the apical membrane K+ conductance and tight junction conductance, thereby resulting in a sustained increased capacity of the tubule to reabsorb Na+ and secrete K+.


1997 ◽  
Vol 273 (1) ◽  
pp. G204-G216 ◽  
Author(s):  
L. al-Nakkash ◽  
C. U. Cotton

Secretion of salt and water by the epithelial cells that line pancreatic ducts depends on activation of apical membrane Cl- conductance. In the present study, we characterized two types of Cl- conductances present in the apical cell membrane of bovine pancreatic duct epithelial cells. Primary cultures of bovine main pancreatic duct epithelium and an immortalized cell line (BPD1) derived from primary cultures were used. Elevation of intracellular adenosine 3',5'-cyclic monophosphate (cAMP) or Ca2+ in intact monolayers of duct epithelium induced sustained anion secretion. Agonist-induced changes in plasma membrane Cl- permeability were accessed by 36 Cl- efflux, whole cell current recording, and measurements of transepithelial Cl- current across permeabilized epithelial monolayers. Elevation of intracellular cAMP elicited a sustained increase in Cl- permeability, whereas elevation of intracellular Ca2+ induced only a transient increase in Cl- permeability. Ca(2+)- but not cAMP-induced increases in Cl- permeability were abolished by preincubation of cells with the Ca2+ buffer 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl) ester (BAPTA-AM). N-phenylanthranilic acid (DPC; 1 mM) and glibenclamide (100 microM), but not 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; 500 microM), inhibited the cAMP-induced increase in Cl- permeability. In contrast, DPC and DIDS, but not glibenclamide, inhibited the Ca(2+)-induced increase in Cl- permeability. We conclude from these experiments that bovine pancreatic duct epithelial cells express at least two types of Cl- channels, cAMP and Ca2+ activated, in the apical cell membrane. Because the Ca(2+)-activated increase in Cl- permeability is transient, the extent to which this pathway contributes to sustained anion secretion by the ductal epithelium remains to be determined.


1985 ◽  
Vol 249 (2) ◽  
pp. G284-G293
Author(s):  
C. A. Loretz ◽  
M. E. Howard ◽  
A. J. Siegel

The Na- and Cl-absorbing goby posterior intestinal epithelium is composed predominantly of mitochondria-rich, tall columnar cells. Glass intracellular microelectrode recording technique was applied to absorptive cells of this relatively leaky epithelium to measure apical cell membrane potential difference (psi mc) and apical membrane fractional resistance. As determined by ion-substitution studies, absorptive cells are characterized by a large, Ba2+-inhibitable apical K conductance, which is a major factor determining psi mc and smaller Cl and Na conductances. Inhibition of the apical Na-Cl-coupled influx directly by furosemide or indirectly by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine produced hyperpolarization of psi mc, consistent with the greater apical membrane conductance to Cl than Na. The urophysial neurosecretory peptide urotensin II, which stimulates Na-Cl-coupled absorption, markedly depolarized psi mc in posterior intestinal tissues from 5% seawater-adapted gobies. This response is consistent with a stimulatory effect of urotensin II at the apical membrane carrier rather than at the basolateral Na-K-ATPase. Urotensin II is without effect on psi mc in tissues from seawater-adapted fish and somatostatin, a natural analogue of urotensin II, is without effect on tissues from fish adapted to either salinity. This specificity parallels that determined using radiotracer fluxes.


1994 ◽  
Vol 266 (3) ◽  
pp. F506-F511 ◽  
Author(s):  
T. R. Kleyman ◽  
S. A. Ernst ◽  
B. Coupaye-Gerard

Both arginine vasopressin (AVP) and forskolin regulate vectorial Na+ transport across high-resistance epithelia by increasing the Na+ conductance of the apical membrane mediated by amiloride-sensitive Na+ channels. Pretreatment of A6 cells with brefeldin A partially inhibited the increase in Na+ transport in response to forskolin, suggesting recruitment of Na+ channels from an intracellular pool. The activation of Cl- secretion was not affected. Apical cell surface expression of Na+ channels was examined following activation of transepithelial Na+ transport across the epithelial cell line A6 by AVP or forskolin. Apical cell surface radioiodinated Na+ channels were immunoprecipitated to quantify the biochemical pool of Na+ channels at the apical plasma membrane and to determine whether an increment in the biochemical pool of Na+ channels expressed at the apical cell surface is a potential mechanism by which AVP and forskolin increase apical membrane Na+ conductance. The activation of Na+ transport across A6 cells by AVP was accompanied by a significant increase in the biochemical pool of Na+ channels at the apical plasma membrane within 5 min after addition of hormone, which was sustained for at least 30 min. The increase in apical cell surface expression of Na+ channels was also observed 30 min after application of forskolin. No changes in the oligomeric subunit composition of the channel were noted. Brefeldin A inhibited the forskolin-stimulated increase in apical cell surface expression of Na+ channels. These results suggest that AVP and forskolin regulate Na+ transport, in part, via rapid recruitment of Na+ channels to the cell surface, perhaps from a pool of channels in the subapical cytoplasm.


1991 ◽  
Vol 260 (5) ◽  
pp. C1000-C1011 ◽  
Author(s):  
G. Saccomani ◽  
C. G. Psarras ◽  
P. R. Smith ◽  
K. L. Kirk ◽  
R. L. Shoemaker

The electrical properties of the apical membrane of isolated rabbit parietal cells were studied using the patch-clamp technique. The apical membrane of the parietal cells plated on Matrigel and maintained in culture conditions was identified by lectin-binding studies. Cell-attached and excised inside-out patches from 10(-4) M cimetidine-treated parietal cells infrequently contained Cl- channels (9% of the patches). A single class of voltage-dependent outwardly rectifying Cl- channels with 24 +/- 1-pS conductance was observed in 75% of the patches from cells stimulated (acid secreting) by 10(-4) M histamine. Other anions passed through these channels with a permeability sequence of I- (1.2) greater than Br- (1.1) greater than or equal to Cl- (1.0) greater than NO3- (0.7) greater than SO4(2-) (0.1), but there was a very low permeability for Na+ or K+ (PCl-/PNa+ or PCl-/PK+ greater than 5). In inside-out patch configurations the Cl- channel was insensitive to Ba2+ and stilbene derivatives but was inhibited by diphenylamine-2-carboxylic acid in a manner characteristic of a reversible open-channel blocker. It is concluded that H2-receptor agonist stimulation of acid secretion by rabbit parietal cells activates Cl- channels in the apical cell membrane.


1994 ◽  
Vol 267 (1) ◽  
pp. G119-G128 ◽  
Author(s):  
G. G. King ◽  
W. E. Lohrmann ◽  
J. W. Ickes ◽  
G. M. Feldman

Colonocytes must regulate intracellular pH (pHi) while they transport H+ and HCO3-. To investigate the membrane transport processes involved in pHi regulation, colonocyte pHi was measured with 2,'7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) in intact segments of rat distal colon mounted on a holder that fits into a standard fluorometer cuvette and allows independent superfusion of mucosal and serosal surfaces. When NCECF-acetoxymethyl ester was in the mucosal solution only, BCECF loaded surface colonocytes with a high degree of selectivity. In HEPES-buffered solutions, basal pHi was 7.31 +/- 0.01 (n = 68), and pHi was dependent on extracellular Na+. Cells acidified in Na(+)-free solution, and pHi rapidly corrected when Na+ was returned. pHi recovered at 0.22 +/- 0.01 pH/min (n = 6) when Na+ was introduced into the mucosal solution and at 0.02 +/- 0.01 pH/min (n = 7) when Na+ was absent from the mucosal solution. The presence or absence of Na+ in the serosal solution did not affect pHi. This indicated that the Na(+)-dependent pHi recovery process is located in the apical cell membrane, but not in the basolateral membrane. Because amiloride (1 mM) inhibited Na(+)-dependent pHi recovery by 75%, Na+/H+ exchange appears to be present in the apical membrane. Because Na(+)-independent pHi recovery was not affected by K(+)-free media, 50 microM SCH-28080, 100 nM bafilomycin A1, or Cl(-)-free media, this transport mechanism does not involve a gastriclike H(+)-K(+)-ATPase, a vacuolar H(+)-ATPase, or a Cl-/base exchanger. In summary, pHi was selectively measured in surface colonocytes by this technique. In these cells, the Na+/H+ exchange activity involved in pHi regulation was detected in the apical membrane, but not in the basolateral membrane.


1994 ◽  
Vol 267 (1) ◽  
pp. R107-R114
Author(s):  
V. Lyall ◽  
T. S. Belcher ◽  
J. H. Miller ◽  
T. U. Biber

Intracellular pH (pHi), apical membrane potential (Va), and fractional apical membrane resistance (FRa) were measured in principal cells of isolated frog skin (Rana pipiens) with double-barreled microelectrodes under short-circuit conditions. Basolateral exposure to 10 mU/ml arginine vasotocin (AVT) depolarized Va by 30 mV, decreased FRa by 33%, increased short-circuit current (Isc) by 17 microA, and increased pHi by 0.17 pH units. The response of Va, Isc, and pHi occurred concurrently. Forskolin, theophylline, and 8-(4-chlorophenyl-thio)-adenosine 3',5'-cyclic monophosphate caused similar changes in Va, Isc, and pHi. The enhanced response of Isc, Va, and FRa to short pulses of apical amiloride applied during AVT or cAMP exposure suggests an increase in apical Na+ conductance. The presence of cAMP agonists also enhanced the response of pHi to amiloride. We conclude that the AVT- and cAMP-induced increase in Na+ transport across the apical cell membrane is associated with a change in pHi. These data are consistent with the hypothesis that changes in pHi may play a role in the second messenger cascade initiated by the antidiuretic hormone.


2017 ◽  
Vol 41 (5) ◽  
pp. 1865-1880 ◽  
Author(s):  
Kouhei Sasamoto ◽  
Rie Marunaka ◽  
Naomi Niisato ◽  
Hongxin Sun ◽  
Akiyuki Taruno ◽  
...  

Background/Aim: Epithelial Na+ channels (ENaC) play a crucial role in control of blood pressure by regulating renal Na+ reabsorption. Intracellular trafficking of ENaC is one of the key regulators of ENaC function, but a quantitative description of intracellular recycling of endogenously expressed ENaC is unavailable. We attempt here to provide a model for intracellular recycling after applying a protease inhibitor under hypotonic conditions. Methods: We simulated the ENaC-mediated Na+ transport in renal epithelial A6 cells measured as short-circuit currents using a four-state mathematical ENaC trafficking model. Results: We developed a four-state mathematical model of ENaC trafficking in the cytosol of renal epithelial cells that consists of: an insertion state of ENaC that can be trafficked to the apical membrane state (insertion rate); an apical membrane state of ENaC conducting Na+ across the apical membrane; a recycling state containing ENaC that are retrieved from the apical membrane state (endocytotic rate) and then to the insertion state (recycling rate) communicating with the apical membrane state or to a degradation state (degradation rate). We studied the effect of aprotinin (a protease inhibitor) blocking protease-induced cleavage of the extracellular loop of γ ENaC subunit on the rates of intracellular ENaC trafficking using the above-defined four-state mathematical model of ENaC trafficking and the recycling number relative to ENaC staying in the apical membrane. We found that aprotinin significantly reduced the insertion rate of ENaC to the apical membrane by 40%, the recycling rate of ENaC by 81%, the cumulative time of an individual ENaC staying in the apical membrane by 32%, the cumulative life-time after the first endocytosis of ENaC by 25%, and the cumulative Na+ absorption by 31%. The most interesting result of the present study is that cleavage of ENaC affects the intracellular ENaC trafficking rate and determines the residency time of ENaC, indicating that more active cleaved ENaCs stay longer at the apical membrane contributing to transcellular Na+ transport via an increase in recycling of ENaC to the apical membrane. Conclusion: The extracellular protease-induced cleavage of the extracellular loop of γ ENaC subunit increases transcellular epithelial Na+ transport by elevating the recycling rate of ENaC due to an increase in the recycling rate of ENaCs associated with increases in the insertion rate of ENaC.


Sign in / Sign up

Export Citation Format

Share Document