Electrolyte transport in rabbit cecum. I. Effect of RDEC-1 infection

1989 ◽  
Vol 256 (4) ◽  
pp. G721-G726 ◽  
Author(s):  
Y. H. Tai ◽  
T. P. Gage ◽  
C. McQueen ◽  
S. B. Formal ◽  
E. C. Boedeker

To investigate the characteristics of intestinal ion and fluid secretion induced by the adherent, effacing enteropathogenic Escherichia coli strain RDEC-1, we infected weanling rabbits with 10(7)-10(8) RDEC-1 organisms and then studied cecal ion transport under short-circuit conditions in Ussing chambers. Results in tissues with confluent adherent organisms were compared with those in uninfected ceca and in ceca stimulated with dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP). The short-circuited cecum normally absorbed Na and Cl, secreted bicarbonate (as represented by the residual ion flux), and displayed a high rate of nondiffusional Na and Cl transport. RDEC-1 infection did not alter the short-circuit current (Isc), but it increased the conductance (Gt), decreased the potential difference (PD), abolished net Na absorption, and reversed Cl absorption to secretion. The changes in Na and Cl net fluxes may be explained by inhibition of a Na-Cl linked absorptive process. In contrast, DBcAMP significantly increased the Isc, PD, and Gt, decreased net Na flux, and abolished net Cl absorption by stimulating electrogenic Cl secretion. These results suggest that RDEC-1-induced changes in cecal ion transport are not mediated by cAMP. The reduction in Na-Cl linked absorption is consistent with anatomic changes in the apical surfaces of absorptive epithelial characteristic of effacing enteroadherence, whereas the increased conductance is consistent with tight junction disruption seen with RDEC-1 infection.

1987 ◽  
Vol 253 (4) ◽  
pp. G483-G488 ◽  
Author(s):  
G. D. Potter ◽  
R. Lester ◽  
S. M. Burlingame ◽  
P. A. Mitchell ◽  
K. L. Schmidt

Failure to absorb bile acids by the ileum leads to fluid secretion by the colon and diarrhea in adults. The infant ileum, however, does not actively transport bile acids. Therefore, we investigated the effect of taurodeoxycholic acid (TDCA) on ion transport in the colon of rabbits 7-10 days old. We mounted distal colon from infant and adult rabbits in modified Ussing chambers and exposed the mucosal or serosal surfaces to TDCA. In the adult, 50 microM TDCA produced an increase in short-circuit current (delta Isc = 1.0 +/- 0.3 mu eq . h-1 . cm-2, P less than 0.05) and Cl secretion. In the infant, the effect was different, Isc was reduced (delta Isc = -1.1 +/- 0.2 mu eq . h-1 . cm-2, P less than 0.01) and ion flux was not altered. Microscopy demonstrated that the infant epithelium was not significantly damaged by exposure to TDCA at these concentrations. The infant colon was, however, capable of a secretory response to a variety of agonists including theophylline, carbachol, bradykinin, serotonin, and 12,13-dibutyryl phorbol ester. The infant rabbit distal colon lacks a secretory response to TDCA during that period when the ileum cannot transport bile acids.


1994 ◽  
Vol 267 (1) ◽  
pp. R156-R163 ◽  
Author(s):  
H. V. Carey ◽  
U. L. Hayden ◽  
K. E. Tucker

Three-week-old piglets were used to study the effects of short-term fasting on jejunal ion transport. A 48-h fast significantly reduced mucosal weight, villus height, and crypt depth. Fasting increased basal short-circuit current (Isc), which reflects active ion transport, and total tissue conductance (Gt) of muscle-stripped jejunal sheets mounted in Ussing chambers. Increases in Isc evoked by carbachol, serotonin, histamine, prostaglandin E2, or Escherichia coli heat-stable enterotoxin were significantly greater in the fasted piglets. Isc responses to mucosal D-glucose were also enhanced by the fast. Under basal conditions, unidirectional and net fluxes of Na+ and Cl-, as well as serosal-to-mucosal inulin fluxes, were significantly increased in fasted piglets. In fed piglets, carbachol increased net Cl- secretion by stimulating serosal-to-mucosal Cl- flux; Gt was not affected. In fasted piglets, carbachol increased net Cl- secretion by inhibiting mucosal-to-serosal fluxes with no effect on serosal-to-mucosal fluxes. In addition, carbachol significantly inhibited mucosal-to-serosal Na+ fluxes and reduced Gt in this group. Thus a 48-h fast increased unidirectional and net ion fluxes in piglet jejunum and enhanced ion transport responses to secretory agonists. The mechanism by which carbachol stimulated net Cl- secretion was also altered by the fast. These results suggest that the absence of luminal nutrition changes the ion transport characteristics of the jejunal epithelium.


1988 ◽  
Vol 255 (3) ◽  
pp. G286-G291 ◽  
Author(s):  
R. C. Orlando ◽  
N. A. Tobey ◽  
V. J. Schreiner ◽  
R. D. Readling

The transmural electrical potential difference (PD) was measured in vivo across the buccal mucosa of humans and experimental animals. Mean PD was -31 +/- 2 mV in humans, -34 +/- 2 mV in dogs, -39 +/- 2 mV in rabbits, and -18 +/- 1 mV in hamsters. The mechanisms responsible for this PD were explored in Ussing chambers using dog buccal mucosa. After equilibration, mean PD was -16 +/- 2 mV, short-circuit current (Isc) was 15 +/- 1 microA/cm2, and resistance was 1,090 +/- 100 omega.cm2, the latter indicating an electrically "tight" tissue. Fluxes of [14C]mannitol, a marker of paracellular permeability, varied directly with tissue conductance. The net fluxes of 22Na and 36Cl were +0.21 +/- 0.05 and -0.04 +/- 0.02 mueq/h.cm2, respectively, but only the Na+ flux differed significantly from zero. Isc was reduced by luminal amiloride, serosal ouabain, or by reducing luminal Na+ below 20 mM. This indicated that the Isc was determined primarily by active Na+ absorption and that Na+ traverses the apical membrane at least partly through amiloride-sensitive channels and exits across the basolateral membrane through Na+-K+-ATPase activity. We conclude that buccal mucosa is capable of active electrolyte transport and that this capacity contributes to generation of the buccal PD in vivo.


1986 ◽  
Vol 61 (3) ◽  
pp. 1065-1070 ◽  
Author(s):  
R. J. Corrales ◽  
D. L. Coleman ◽  
D. B. Jacoby ◽  
G. D. Leikauf ◽  
H. L. Hahn ◽  
...  

Sheets of trachea from ferret and cat were mounted in Ussing chambers and continuously short circuited. Under resting conditions, in both the cat and ferret there was little or no Cl secretion, and Na absorption accounted for most of the short-circuit current (Isc). Ouabain (10(-4) M, serosal bath) reduced Isc to zero in 30–60 min. This decline was matched by a decrease in net Na absorption. Amiloride (10(-4) M, luminal bath) caused a significant decrease in Isc and conductance (G) in both species. Bumetanide (10(-4) M, serosal bath) had negligible effects on Isc and G. In both species, isoproterenol increased Isc by stimulating Cl secretion. Methacholine induced equal amounts of Na and Cl secretion, with little change in Isc. In the cat, prostaglandins E2 and F2 alpha and bradykinin increased Isc, responses which were abolished in Cl-free medium. In open-circuited cat tissues, Na flux from the serosal to mucosal side was measured simultaneously with the secretion of nondialyzable 35S. Prostaglandins E1, E2, and F2 alpha, histamine, bradykinin, methacholine and isoproterenol all increased both Na and 35S-mucin secretion.


1995 ◽  
Vol 269 (2) ◽  
pp. R426-R431 ◽  
Author(s):  
T. R. Traynor ◽  
D. R. Brown ◽  
S. M. O'Grady

Electrical transmural stimulation (ETS) was used to examine the neuroregulation of electrolyte transport in the porcine distal colon. ETS of the colonic mucosa-submucosa mounted in Ussing chambers produced rapid and transient increases in short-circuit current (Isc) that were inhibited 36% by serosal bumetanide, suggesting that a portion of the response may be attributed to Cl secretion. ETS actions were dependent upon stimulus intensity and frequency and were inhibited by tetrodotoxin and omega-conotoxin. Prazosin and pyrilamine had no effect on the mucosal responses to ETS, whereas atropine reduced the responses by 32%. Neuropeptide Y (NPY) also reduced the mucosal responses to ETS up to 60% (half-maximal effective concentration = 17 nM). In addition, the effects of leukotriene C4, previously shown to stimulate Cl secretion via a neuronal pathway, were also inhibited by NPY. These results indicate that cholinergic submucosal neurons play a role in the regulation of epithelial ion transport and that NPY acts as an inhibitory neuromodulator, particularly on leukotriene-sensitive neurons in the porcine distal colon.


1992 ◽  
Vol 82 (6) ◽  
pp. 667-672 ◽  
Author(s):  
S. N. Smith ◽  
E. W. F. W. Alton ◽  
D. M. Geddes

1. The basic defect in cystic fibrosis relates to abnormalities of ion transport in affected tissues, such as the respiratory and gastrointestinal tracts. The identification of the cystic fibrosis gene has enabled studies on the production of a cystic fibrosis transgenic mouse to be undertaken. Knowledge of normal ion transport will be necessary for the validation of any such animal model. We have therefore characterized selected responses of the murine trachea and caecum mounted in ‘mini’ Ussing chambers under open-circuit conditions. 2. Basal values for the trachea were: potential difference, 1.1 mV (sem 0.2; n=18); equivalent short-circuit current, 20.4 μA/cm2 (3.6); conductance, 18.2 mS/cm2 (1.7). Corresponding values for the caecum were: potential difference, 0.7 mV (0.1; n=18); equivalent short-circuit current, 11.0 μA/cm2 (1.6); conductance, 14.5 mS/cm2 (1.4). 3. Amiloride (10 μmol/l) produced a significant (P < 0.001) fall in potential difference of 43.0% (5.7) in the trachea, but had no significant effect in the caecum. 4. Subsequently, one of three protocols was used to assess the capacity of either tissue for chloride secretion. Addition of a combination of forskolin (1 μmol/l) and zardaverine (10 μmol/l) produced rises in the potential difference of 873% (509) in the trachea and 399% (202) in the caecum. Both A23187 (10 μmol/l) and phorbol dibutyrate (10 nmol/l) increased tracheal potential difference by 350% (182) and 147% (47), respectively. Neither had a significant effect in the caecum. 5. Subsequent addition of bumetanide caused a fall in the stimulated potential difference of between 39.8% and 71.7%, depending on secretagogue and tissue type. 6. When a homozygous transgenic cystic fibrosis mouse becomes available, these responses should allow such an animal to be distinguished from normal or heterozygous mice.


1990 ◽  
Vol 259 (1) ◽  
pp. G62-G69 ◽  
Author(s):  
L. L. Clarke ◽  
R. A. Argenzio

In contrast to in vivo findings, the equine proximal colon fails to demonstrate significant net absorption of Na+ and Cl- under in vitro conditions. The present study was undertaken to determine if endogenous prostanoids are responsible for this apparent lack of ion transport. Proximal colonic tissues from ponies were preincubated in either normal Ringer solution or in Ringer containing 1 microM indomethacin and studied in Ussing chambers containing these solutions. Untreated colonic mucosa demonstrated negligible Na(+)-Cl- absorption in the basal state. In contrast, indomethacin-treated colon significantly absorbed Na+ and Cl-, primarily as the result of an equivalent increase in the mucosal-to-serosal flux of these ions. Preincubation of proximal colon in 0.1 mM ibuprofen-treated Ringer yielded similar results. Treatment of indomethacin colon with 1 mM mucosal amiloride eliminated net Na(+)-Cl- absorption without affecting the short-circuit current (Isc). The Isc in control tissue was significantly greater than in indomethacin-treated tissue and was reduced by 0.1 mM serosal furosemide. Serosal addition of 0.1 microM prostaglandin E2 or 10 mM serosal plus mucosal theophylline to indomethacin-treated tissues abolished net Na(+)-Cl- absorption and increased the Isc to levels indistinguishable from control. In contrast, control tissues were essentially unaffected by these secretagogues. These findings indicated that Na(+)-Cl- absorption in equine proximal colon was electroneutral (possibly involving Na(+)-H+ exchange) and that the tissue was capable of electrogenic Cl- secretion. However, under the in vitro conditions, basal ion transport was dominated by endogenous prostanoids that abolished Na(+)-Cl- absorption and elicited near-maximal electrogenic Cl- secretion.


2005 ◽  
Vol 288 (3) ◽  
pp. G457-G465 ◽  
Author(s):  
Hui Dong ◽  
Zachary M. Sellers ◽  
Anders Smith ◽  
Jimmy Y. C. Chow ◽  
Kim E. Barrett

Stimulation of muscarinic receptors in duodenal mucosa raises intracellular Ca2+, which regulates ion transport, including HCO3− secretion. However, the underlying Ca2+ handling mechanisms are poorly understood. The aim of the present study was to determine whether Na+/Ca2+ exchanger (NCX) plays a role in the regulation of duodenal mucosal ion transport and HCO3− secretion by controlling Ca2+ homeostasis. Mouse duodenal mucosa was mounted in Ussing chambers. Net ion transport was assessed as short-circuit current ( Isc), and HCO3− secretion was determined by pH-stat. Expression of NCX in duodenal mucosae was analyzed by Western blot, and cytosolic Ca2+ in duodenocytes was measured by fura 2. Carbachol (100 μM) increased Isc in a biphasic manner: an initial transient peak within 2 min and a later sustained plateau starting at 10 min. Carbachol-induced HCO3− secretion peaked at 10 min. 2-Aminoethoxydiphenylborate (2-APB, 100 μM) or LiCl (30 mM) significantly reduced the initial peak in Isc by 51 or 47%, respectively, and abolished the plateau phase of Isc without affecting HCO3− secretion induced by carbachol. Ryanodine (100 μM), caffeine (10 mM), and nifedipine (10 μM) had no effect on either response to carbachol. In contrast, nickel (5 mM) and KB-R7943 (10–30 μM) significantly inhibited carbachol-induced increases in duodenal mucosal Isc and HCO3− secretion. Western blot analysis showed expression of NCX1 proteins in duodenal mucosae, and functional NCX in duodenocytes was demonstrated in Ca2+ imaging experiments where Na+ depletion elicited Ca2+ entry via the reversed mode of NCX. These results indicate that NCX contributes to the regulation of Ca2+-dependent duodenal mucosal ion transport and HCO3− secretion that results from stimulation of muscarinic receptors.


1998 ◽  
Vol 275 (1) ◽  
pp. G29-G38 ◽  
Author(s):  
Derek M. McKay ◽  
Michelle A. Benjamin ◽  
Jun Lu

The immunomodulatory properties of bacterial superantigens (SAgs) have been defined, yet comparatively little is known of how SAgs may affect enteric physiology. Staphylococcus aureus enterotoxin B (SEB) was used to examine the ability of SAgs to alter epithelial ion transport. BALB/c mice, severe combined immunodeficient (SCID, lack T cells) mice, or SCID mice reconstituted with lymphocytes or CD4+T cells received SEB intraperitoneally, and jejunal segments were examined in Ussing chambers; controls received saline only. Baseline short-circuit current ( Isc, indicates net ion transport) and Iscresponses evoked by electrical nerve stimulation, histamine, carbachol, or forskolin were recorded. Serum levels of interleukin-2 (IL-2) and interferon-γ (IFN-γ) were measured. SEB-treated BALB/c mice showed elevated serum IL-2 and IFN-γ levels, and jejunal segments displayed a time- and dose-dependent increase in baseline Isccompared with controls. Conversely, evoked ion secretion was selectively reduced in jejunum from SEB-treated mice. Elevated cytokine levels and changes in jejunal Iscwere not observed in SEB-treated SCID mice. In contrast, SCID mice reconstituted with T cells were responsive to SEB challenge as shown by increased cytokine production and altered jejunal Iscresponses that were similar to those observed in jejunum from SEB-treated BALB/c mice. We conclude that exposure to a model bacterial SAg causes distinct changes in epithelial physiology and that these events can be mediated by CD4+T cells.


1998 ◽  
Vol 275 (1) ◽  
pp. G76-G84 ◽  
Author(s):  
Toan D. Nguyen ◽  
Charles N. Okolo ◽  
Mark W. Moody

Histamine affects pancreatic secretion, but its direct action on ion transport by pancreatic duct epithelial cells (PDEC) has not been defined. We now characterize the secretory effects of histamine on cultured, well-differentiated, and nontransformed dog PDEC. Histamine stimulated, in a concentration-dependent manner (1–100 μM), a cellular125I−efflux that was inhibited by 500 μM 5-nitro-2-(3-phenylpropylamino)benzoic acid, 2.5 mM diphenylamine-2-carboxylate, and 500 μM DIDS and thus mediated through Ca2+-activated Cl− channels. Histamine-stimulated125I−efflux was 1) inhibited by 100 μM diphenhydramine, an H1receptor antagonist, 2) resistant to 1 mM cimetidine, an H2 receptor antagonist, 3) not reproduced by 1 mM dimaprit, an H2 agonist, and 4) inhibited by 50 μM 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid-AM, a Ca2+ chelator, suggesting that it was mediated through H1 receptors acting via increased cytosolic Ca2+. Histamine also stimulated a86Rb+efflux that was sensitive to 100 nM charybdotoxin and thus mediated through Ca2+-activated K+ channels. When PDEC monolayers were studied in Ussing chambers, a short-circuit current of 21.7 ± 3.1 μA/cm2 was stimulated by 100 μM histamine. This effect was inhibited by diphenhydramine but not cimetidine, was not reproduced with dimaprit, and was observed only after serosal addition of histamine, suggesting that it was mediated by basolateral H1 receptors on PDEC. In conclusion, histamine, acting through basolateral H1 receptors, activates both Ca2+-activated Cl− and K+ channels; in this manner, it may regulate PDEC secretion in normal or inflamed pancreas.


Sign in / Sign up

Export Citation Format

Share Document