Histamine stimulates ion transport by dog pancreatic duct epithelial cells through H1receptors

1998 ◽  
Vol 275 (1) ◽  
pp. G76-G84 ◽  
Author(s):  
Toan D. Nguyen ◽  
Charles N. Okolo ◽  
Mark W. Moody

Histamine affects pancreatic secretion, but its direct action on ion transport by pancreatic duct epithelial cells (PDEC) has not been defined. We now characterize the secretory effects of histamine on cultured, well-differentiated, and nontransformed dog PDEC. Histamine stimulated, in a concentration-dependent manner (1–100 μM), a cellular125I−efflux that was inhibited by 500 μM 5-nitro-2-(3-phenylpropylamino)benzoic acid, 2.5 mM diphenylamine-2-carboxylate, and 500 μM DIDS and thus mediated through Ca2+-activated Cl− channels. Histamine-stimulated125I−efflux was 1) inhibited by 100 μM diphenhydramine, an H1receptor antagonist, 2) resistant to 1 mM cimetidine, an H2 receptor antagonist, 3) not reproduced by 1 mM dimaprit, an H2 agonist, and 4) inhibited by 50 μM 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid-AM, a Ca2+ chelator, suggesting that it was mediated through H1 receptors acting via increased cytosolic Ca2+. Histamine also stimulated a86Rb+efflux that was sensitive to 100 nM charybdotoxin and thus mediated through Ca2+-activated K+ channels. When PDEC monolayers were studied in Ussing chambers, a short-circuit current of 21.7 ± 3.1 μA/cm2 was stimulated by 100 μM histamine. This effect was inhibited by diphenhydramine but not cimetidine, was not reproduced with dimaprit, and was observed only after serosal addition of histamine, suggesting that it was mediated by basolateral H1 receptors on PDEC. In conclusion, histamine, acting through basolateral H1 receptors, activates both Ca2+-activated Cl− and K+ channels; in this manner, it may regulate PDEC secretion in normal or inflamed pancreas.

2004 ◽  
Vol 286 (5) ◽  
pp. G814-G821 ◽  
Author(s):  
Bi-Guang Tuo ◽  
Jimmy Y. C. Chow ◽  
Kim E. Barrett ◽  
Jon I. Isenberg

PKC has been shown to regulate epithelial Cl- secretion in a variety of models. However, the role of PKC in duodenal mucosal bicarbonate secretion is less clear. We aimed to investigate the role of PKC in regulation of duodenal mucosal bicarbonate secretion. Bicarbonate secretion by murine duodenal mucosa was examined in vitro in Ussing chambers using a pH-stat technique. PKC isoform expression and activity were assessed by Western blotting and in vitro kinase assays, respectively. PMA (an activator of PKC) alone had no effect on duodenal bicarbonate secretion or short-circuit current ( Isc). When PMA and dibutyryl-cAMP (db-cAMP) were added simultaneously, PMA failed to alter db-cAMP-stimulated duodenal bicarbonate secretion or Isc ( P > 0.05). However, a 1-h preincubation with PMA potentiated db-cAMP-stimulated duodenal bicarbonate secretion and Isc in a concentration-dependent manner (from 10-8 to 10-5M) ( P < 0.05). PMA preincubation had no effects on carbachol- or heat-stable toxin-stimulated bicarbonate secretion. Western blot analysis revealed that PKCα, -γ, -ϵ, -θ, -μ, and -ι/λ were expressed in murine duodenal mucosa. Ro 31–8220 (an inhibitor active against PKCϵ, -α, -β, and -γ), but not Gö 6983 (an inhibitor active against PKCα, -γ, -β, and -δ), reversed the potentiating effect of PMA on db-cAMP-stimulated bicarbonate secretion. PMA also time- and concentration-dependently increased the activity of PKCϵ, an effect that was prevented by Ro 31–8220 but not Gö 6983. These results demonstrate that activation of PKC potentiates cAMP-stimulated duodenal bicarbonate secretion, whereas it does not modify basal secretion. The effect of PKC on cAMP-stimulated bicarbonate secretion is mediated by the PKCϵ isoform.


2008 ◽  
Vol 197 (3) ◽  
pp. 575-582 ◽  
Author(s):  
Chatsri Deachapunya ◽  
Sutthasinee Poonyachoti ◽  
Nateetip Krishnamra

The effect of prolactin (PRL) on ion transport across the porcine glandular endometrial epithelial cells was studied in primary cell culture using the short-circuit current technique. Addition of 1 μg/ml PRL either to the apical solution or to the basolateral solution produced a peak followed by a sustained increase in Isc, but with a lesser response when PRL was added apically. Basolateral addition of PRL increased the Isc in a concentration-dependent manner with a maximum effect at 1 μg/ml and an effective concentration value of 120 ng/ml. The PRL-stimulated Isc was significantly reduced by pretreatment with an apical addition of 5-nitro-2-(3-phenylpropylamino) benzoic acid (200 μM), diphenylamine-2-carboxylic acid (1 mM) or 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (200 μM), Cl− channel blockers, but not by amiloride (10 μM), a Na+ channel blocker. In addition, pretreatment with bumetanide (200 μM), a Na+–K+–2Cl− cotransporter inhibitor, in the basolateral solution significantly reduced the PRL-stimulated Isc. Replacement of Cl− or in the bathing solutions also decreased the Isc response to PRL. Pretreatment of the monolayer with AG490 (50 μM), an inhibitor of JAK2 activity significantly inhibited the PRL-induced increase in Isc. Western blot analysis of the porcine endometrial epithelial cells revealed the presence of short isoform of PRL receptor (PRLR-S) that could be regulated by 17β-estradiol. The results of this investigation showed that PRL acutely stimulated anion secretion across the porcine endometrial epithelial cells possibly through PRLR-S present in both apical and basolateral membranes. The PRL response appeared to be mediated by the JAK2-dependent pathway.


2001 ◽  
Vol 280 (5) ◽  
pp. G795-G804 ◽  
Author(s):  
T. D. Nguyen ◽  
S. Meichle ◽  
U. S. Kim ◽  
T. Wong ◽  
M. W. Moody

Pancreatic duct epithelial cells (PDEC) mediate the exocrine secretion of fluid and electrolytes. We previously reported that ATP and UTP interact with P2Y2 receptors on nontransformed canine PDEC to increase intracellular free Ca2+ concentration ([Ca2+]i) and stimulate Ca2+-activated Cl− and K+channels. We now report that ATP interacts with additional purinergic receptors to increase cAMP and activate Cl−channels. ATP, 2-methylthio-ATP, and ATP-γ-S stimulated a 4- to 10-fold cAMP increase with EC50 of 10–100 μM. Neither UTP nor adenosine stimulated a cAMP increase, excluding a role for P2Y2 or P1 receptors. Although UTP stimulated an125I− efflux that was fully inhibited by 1,2-bis(2-aminophenoxy)ethane- N,N,N′,N′-tetraacetic acid tetra(acetoxymethyl) ester (BAPTA-AM), ATP stimulated a partially resistant efflux, suggesting activation of additional Cl−conductances through P2Y2-independent and Ca2+-independent pathways. In Ussing chambers, increased cAMP stimulated a much larger short-circuit current ( I sc) increase from basolaterally permeabilized PDEC monolayers than increased [Ca2+]i. Luminal ATP and UTP and serosal UTP stimulated a small Ca2+-type I sc increase, whereas serosal ATP stimulated a large cAMP-type I scresponse. Serosal ATP effect was inhibited by P2 receptor blockers and unaffected by BAPTA-AM, supporting ATP activation of Cl−conductances through P2 receptors and a Ca2+-independent pathway. RT-PCR confirmed the presence of P2Y11 receptor mRNA, the only P2Y receptor acting via cAMP.


1999 ◽  
Vol 276 (4) ◽  
pp. C777-C787 ◽  
Author(s):  
Lane L. Clarke ◽  
Matthew C. Harline ◽  
Miguel A. Otero ◽  
Geraldine G. Glover ◽  
Richard C. Garrad ◽  
...  

Desensitization of P2Y2 receptor-activated anion secretion may limit the usefulness of extracellular nucleotides in secretagogue therapy of epithelial diseases, e.g., cystic fibrosis (CF). To investigate the desensitization process for endogenous P2Y2 receptors, freshly excised or cultured murine gallbladder epithelia (MGEP) were mounted in Ussing chambers to measure short-circuit current ( I sc), an index of electrogenic anion secretion. Luminal treatment with nucleotide receptor agonists increased the I sc with a potency profile of ATP = UTP > 2-methylthioATP >> α,β-methylene-ATP. RT-PCR revealed the expression of P2Y2 receptor mRNA in the MGEP cells. The desensitization of anion secretion required a 10-min preincubation with the P2Y2receptor agonist UTP and increased in a concentration-dependent manner (IC50 ≈ 10−6 M). Approximately 40% of the anion secretory response was unaffected by maximal desensitizing concentrations of UTP. Recovery from UTP-induced desensitization was rapid (<10 min) at preincubation concentrations less than the EC50 (1.9 × 10−6 M) but required progressively longer time periods at greater concentrations. UTP-induced total inositol phosphate production and intracellular Ca2+ mobilization desensitized with a concentration dependence similar to that of anion secretion. In contrast, maximal anion secretion induced by Ca2+ ionophore ionomycin was unaffected by preincubation with a desensitizing concentration of UTP. It was concluded that 1) desensitization of transepithelial anion secretion stimulated by the P2Y2 receptor agonist UTP is time and concentration dependent; 2) recovery from desensitization is prolonged (>90 min) at UTP concentrations >10−5 M; and 3) UTP-induced desensitization occurs before the operation of the anion secretory mechanism.


1984 ◽  
Vol 247 (4) ◽  
pp. G411-G418 ◽  
Author(s):  
R. D. McCabe ◽  
P. L. Smith

The effects of histamine on colonic ion transport were examined in in vitro preparations of rabbit descending colon. Serosal addition of histamine (10(-5) M) produced a transient increase in short-circuit current (Isc) and transepithelial conductance. The Isc response to histamine could be blocked by removing Cl from both bathing solutions, adding furosemide (10(-3) M) to the serosal bathing solution, adding indomethacin to the serosal and mucosal bathing solutions (10(-5) M), or removing Ca from the serosal bathing solution. In addition, the histamine-induced increase in Isc was inhibited in a dose-dependent manner by the H1-receptor antagonist diphenhydramine, with a maximal inhibition at 10(-4) M and a half-maximal inhibition at 3 X 10(-7) M. The H2-receptor antagonist cimetidine (10(-3) M) was without effect on the histamine response. Measurement of unidirectional Na, K, and Cl fluxes revealed that serosal addition of diphenhydramine (10(-3) M) reduced basal Isc due to a decrease in mucosal-to-serosal Na flux. Serosal addition of diphenhydramine (10(-3) M) also inhibited the increase in Isc produced by serosal addition of prostaglandin E1, 8-bromo-cAMP, cholera toxin, or the ionophore A23187. Measurement of unidirectional K and Cl fluxes revealed that prostaglandin E1 alone increased serosal-to-mucosal K and Cl fluxes and reduced the mucosal-to-serosal K flux, thereby increasing net K and Cl secretion. Serosal diphenhydramine (10(-3) M) abolished the changes in Cl fluxes produced by prostaglandin E1 and reduced the magnitude of the changes in K fluxes.(ABSTRACT TRUNCATED AT 250 WORDS)


2002 ◽  
Vol 283 (5) ◽  
pp. G1042-G1050 ◽  
Author(s):  
Charles Okolo ◽  
Thomas Wong ◽  
Mark W. Moody ◽  
Toan D. Nguyen

Pancreatic duct epithelial cells (PDEC) mediate the secretion of fluid and electrolytes and are exposed to refluxed bile. In nontransformed cultured dog PDEC, which express many ion transport pathways of PDEC, 1 mM taurodeoxycholic acid (TDCA) stimulated an125I−efflux inhibited by DIDS and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and a86Rb+efflux inhibited by charybdotoxin. Inhibition by 1,2-bis(2-aminophenoxy)ethane- N,N,N′,N′-tetraacetic acid (BAPTA)-AM suggests mediation via increased intracellular Ca2+concentration, whereas the absence of lactate dehydrogenase release excludes cellular toxicity. At 1 mM, TDCA stimulated a larger125I−efflux than glycodeoxycholate; two dihydroxy bile acids, taurochenodeoxycholate and TDCA, were similarly effective, whereas a trihydroxy bile acid, taurocholate, was ineffective. In Ussing chambers, 1 mM serosal or 2 mM luminal TDCA stimulated an Iscincrease from confluent PDEC monolayers. TDCA also stimulated 1) a short-circuit current ( Isc) increase from basolaterally permeabilized PDEC subject to a serosal-to-luminal Cl−gradient that was inhibited by BAPTA-AM, DIDS, and NPPB and 2) an Iscincrease from apically permeabilized PDEC subject to a luminal-to-serosal K+gradient inhibited by BAPTA-AM and charybdotoxin. Along with the efflux studies, these findings suggest that TDCA interacts directly with PDEC to stimulate Ca2+-activated apical Cl−channels and basolateral K+channels. Monolayer transepithelial resistance was only minimally affected by 1 mM serosal and 2 mM luminal TDCA but decreased after exposure to higher TDCA concentrations (2 mM serosal and 4 mM luminal). A secretory role for bile acids should be considered in pancreatic diseases associated with bile reflux.


1986 ◽  
Vol 61 (3) ◽  
pp. 1065-1070 ◽  
Author(s):  
R. J. Corrales ◽  
D. L. Coleman ◽  
D. B. Jacoby ◽  
G. D. Leikauf ◽  
H. L. Hahn ◽  
...  

Sheets of trachea from ferret and cat were mounted in Ussing chambers and continuously short circuited. Under resting conditions, in both the cat and ferret there was little or no Cl secretion, and Na absorption accounted for most of the short-circuit current (Isc). Ouabain (10(-4) M, serosal bath) reduced Isc to zero in 30–60 min. This decline was matched by a decrease in net Na absorption. Amiloride (10(-4) M, luminal bath) caused a significant decrease in Isc and conductance (G) in both species. Bumetanide (10(-4) M, serosal bath) had negligible effects on Isc and G. In both species, isoproterenol increased Isc by stimulating Cl secretion. Methacholine induced equal amounts of Na and Cl secretion, with little change in Isc. In the cat, prostaglandins E2 and F2 alpha and bradykinin increased Isc, responses which were abolished in Cl-free medium. In open-circuited cat tissues, Na flux from the serosal to mucosal side was measured simultaneously with the secretion of nondialyzable 35S. Prostaglandins E1, E2, and F2 alpha, histamine, bradykinin, methacholine and isoproterenol all increased both Na and 35S-mucin secretion.


1995 ◽  
Vol 269 (2) ◽  
pp. R426-R431 ◽  
Author(s):  
T. R. Traynor ◽  
D. R. Brown ◽  
S. M. O'Grady

Electrical transmural stimulation (ETS) was used to examine the neuroregulation of electrolyte transport in the porcine distal colon. ETS of the colonic mucosa-submucosa mounted in Ussing chambers produced rapid and transient increases in short-circuit current (Isc) that were inhibited 36% by serosal bumetanide, suggesting that a portion of the response may be attributed to Cl secretion. ETS actions were dependent upon stimulus intensity and frequency and were inhibited by tetrodotoxin and omega-conotoxin. Prazosin and pyrilamine had no effect on the mucosal responses to ETS, whereas atropine reduced the responses by 32%. Neuropeptide Y (NPY) also reduced the mucosal responses to ETS up to 60% (half-maximal effective concentration = 17 nM). In addition, the effects of leukotriene C4, previously shown to stimulate Cl secretion via a neuronal pathway, were also inhibited by NPY. These results indicate that cholinergic submucosal neurons play a role in the regulation of epithelial ion transport and that NPY acts as an inhibitory neuromodulator, particularly on leukotriene-sensitive neurons in the porcine distal colon.


1992 ◽  
Vol 82 (6) ◽  
pp. 667-672 ◽  
Author(s):  
S. N. Smith ◽  
E. W. F. W. Alton ◽  
D. M. Geddes

1. The basic defect in cystic fibrosis relates to abnormalities of ion transport in affected tissues, such as the respiratory and gastrointestinal tracts. The identification of the cystic fibrosis gene has enabled studies on the production of a cystic fibrosis transgenic mouse to be undertaken. Knowledge of normal ion transport will be necessary for the validation of any such animal model. We have therefore characterized selected responses of the murine trachea and caecum mounted in ‘mini’ Ussing chambers under open-circuit conditions. 2. Basal values for the trachea were: potential difference, 1.1 mV (sem 0.2; n=18); equivalent short-circuit current, 20.4 μA/cm2 (3.6); conductance, 18.2 mS/cm2 (1.7). Corresponding values for the caecum were: potential difference, 0.7 mV (0.1; n=18); equivalent short-circuit current, 11.0 μA/cm2 (1.6); conductance, 14.5 mS/cm2 (1.4). 3. Amiloride (10 μmol/l) produced a significant (P < 0.001) fall in potential difference of 43.0% (5.7) in the trachea, but had no significant effect in the caecum. 4. Subsequently, one of three protocols was used to assess the capacity of either tissue for chloride secretion. Addition of a combination of forskolin (1 μmol/l) and zardaverine (10 μmol/l) produced rises in the potential difference of 873% (509) in the trachea and 399% (202) in the caecum. Both A23187 (10 μmol/l) and phorbol dibutyrate (10 nmol/l) increased tracheal potential difference by 350% (182) and 147% (47), respectively. Neither had a significant effect in the caecum. 5. Subsequent addition of bumetanide caused a fall in the stimulated potential difference of between 39.8% and 71.7%, depending on secretagogue and tissue type. 6. When a homozygous transgenic cystic fibrosis mouse becomes available, these responses should allow such an animal to be distinguished from normal or heterozygous mice.


2014 ◽  
Vol 307 (2) ◽  
pp. G241-G247 ◽  
Author(s):  
Kevin W. Lomasney ◽  
John F. Cryan ◽  
Niall P. Hyland

Evidence has grown to support the efficacy of probiotics in the management of gastrointestinal disorders, many of which are associated with dysregulated fluid and electrolyte transport. A growing body of evidence now suggests that the host microbiota and probiotics can influence intestinal ion transport and that these effects often occur in a strain-dependent manner. In this study, we sought to investigate the effects of two therapeutically relevant organisms, Bifidobacterium infantis 35624 and Lactobacillus salivarius UCC118, on small intestinal transit, fecal output and water content, transepithelial resistance (TER), and colonic secretomotor function. Mice fed either strain displayed significantly reduced small intestinal transit in vivo, though neither strain influenced fecal pellet output or water content. Colon from mice fed both organisms displayed increased colonic TER, without a concomitant change in the gene expression of the tight junction proteins claudin 1 and occludin. However, L. salivarius UCC118 selectively inhibited neurally evoked ion secretion in tissues from animals fed this particular probiotic. Consistent with this finding, the neurotoxin tetrodotoxin (TTx) significantly inhibited the short-circuit current response induced by L. salivarius UCC118 following addition to colonic preparations in Ussing chambers. Responses to B. infantis 35624 also displayed sensitivity to TTx, although to a significantly lesser degree than L. salivarius UCC118. Both strains similarly inhibited cholinergic-induced ion transport after addition to Ussing chambers. Taken together, these data suggest that B. infantis 35624 and L. salivarius UCC118 may be indicated in disorders associated with increased small intestinal transit, and, in particular for L. salivarius UCC118, neurally mediated diarrhea.


Sign in / Sign up

Export Citation Format

Share Document