Migration of IEC-6 cells: a model for mucosal healing

1992 ◽  
Vol 263 (3) ◽  
pp. G426-G435 ◽  
Author(s):  
S. A. McCormack ◽  
M. J. Viar ◽  
L. R. Johnson

Cell migration is the principal force behind the early restitution of erosions of the mucosa of the gastrointestinal tract. Despite the importance of cell migration to healing, no attempts to study the process in culture have been reported. We have attempted to standardize conditions for migration and test the migration responses of the small intestinal epithelial crypt cell line IEC-6 in some experimental situations already well known in vivo. We found good correspondence between in culture and in vivo on the following points: 1) migration was independent of DNA synthesis; 2) DNA synthesis was not concentrated at the wound edge; and 3) inhibition of actin polymerization stopped migration altogether. In addition, the presence of an extracellular matrix maximized migration. Protein inhibitors with different modes of action inhibited cell migration to different degrees, not always commensurate with their inhibition of protein synthesis. Cell surface proteoglycans were important; hyaluronic acid had an effect, but the secretion of a migration-stimulating substance by wounded cells was equivocal. Significantly, alpha-difluoromethylornithine (DFMO), which inhibits ornithine decarboxylase and polyamine synthesis, almost totally prevented cell migration. Because DFMO also prevents healing of mucosal erosions in vivo, we believe that this model can be used, keeping in mind its spatial limitations, to study the process of cell migration involved in the early restitution of mucosal erosions.

2003 ◽  
Vol 285 (5) ◽  
pp. C1028-C1035 ◽  
Author(s):  
Laurence J. Egan ◽  
Ana de Lecea ◽  
Evan D. Lehrman ◽  
Gennett M. Myhre ◽  
Lars Eckmann ◽  
...  

Epithelial restitution, the movement of wound-edge cells into an area of epithelial cell denudation, is an important early step in the ulcer healing process. Growth factors regulate epithelial restitution, yet little is known about the transcriptional pathways that mediate their effects on cell migration. The transcription factor nuclear factor (NF)-κB is a master regulator of the host inflammatory response that is activated in the epithelium in intestinal inflammation, which often accompanies epithelial injury. We hypothesized that NF-κB may be an important transcriptional regulator of epithelial restitution. In an in vitro model of scrape-wounded monolayers of nontransformed rat intestinal epithelial (RIE-1) cells, NF-κB was activated in epithelial cells at the wound edge. Blocking of NF-κB activation by either pharmacological or genetic approaches inhibited intestinal epithelial restitution. Moreover, scrape wounding activated the epidermal growth factor receptor (EGFR) in cells at the wound edge, and, importantly, inhibiting EGFR tyrosine kinase activity decreased scrape wound-induced NF-κB activation and cell migration. These results indicate a novel role of NF-κB activation in a signaling pathway important for restitution and healing of intestinal epithelia. To the extent NF-κB may have parallel functions in vivo, they also suggest a need for caution in the proposed use of NF-κB inhibitors for the treatment of conditions associated with inflammation and injury of intestinal and other mucosal surfaces.


1998 ◽  
Vol 274 (5) ◽  
pp. G879-G885 ◽  
Author(s):  
Ali Banan ◽  
Shirley A. McCormack ◽  
Leonard R. Johnson

Polyamines are essential for the repair of gastric and duodenal erosions. Concentrated NaCl (3.4 M) given intragastrically damages the oxyntic gland mucosa and increases the activity of gastric mucosal ornithine decarboxylase (ODC), the first rate-limiting enzyme in polyamine synthesis. The nature of the process of restitution of damaged mucosa is not well known, except that cell migration and the actin cytoskeleton play a prominent role. Microtubules are cytoskeletal components essential for cell migration. The present investigation determines the relationship between polyamines, the distribution of microtubules, and gastric healing in mucosa damaged with hypertonic NaCl solution. Rats were fasted for 22 h and then given 1.0 ml of 3.4 M NaCl intragastrically. Animals were killed 1, 2, 4, 8, and 10 h after 3.4 M NaCl. The oxyntic gland mucosa was removed, and tubulin was visualized by immunofluorescence. Microtubule density was increased around and below the damaged mucosa in the upper one-third of the glandular epithelium at 2 and 4 h and returned to near control levels by 10 h. In rats damaged with 3.4 M NaCl and pretreated intraperitoneally with α-difluoromethylornithine (DFMO), a specific inhibitor of ODC, microtubule content was reduced significantly at all time points after NaCl treatment. Addition of spermidine after pretreatment with DFMO and 3.4 M NaCl significantly prevented the effects of DFMO. Colchicine, a potent microtubule-disrupting drug, significantly delayed normal gastric mucosal healing with no effect on ODC activity. These data show that polyamines influence the distribution of microtubules during damage in vivo and indicate a partial mechanism for the dependency of mucosal healing on polyamines.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Bjarne Vermeire ◽  
Liara M. Gonzalez ◽  
Robert J. J. Jansens ◽  
Eric Cox ◽  
Bert Devriendt

AbstractSmall intestinal organoids, or enteroids, represent a valuable model to study host–pathogen interactions at the intestinal epithelial surface. Much research has been done on murine and human enteroids, however only a handful studies evaluated the development of enteroids in other species. Porcine enteroid cultures have been described, but little is known about their functional responses to specific pathogens or their associated virulence factors. Here, we report that porcine enteroids respond in a similar manner as in vivo gut tissues to enterotoxins derived from enterotoxigenic Escherichia coli, an enteric pathogen causing postweaning diarrhoea in piglets. Upon enterotoxin stimulation, these enteroids not only display a dysregulated electrolyte and water balance as shown by their swelling, but also secrete inflammation markers. Porcine enteroids grown as a 2D-monolayer supported the adhesion of an F4+ ETEC strain. Hence, these enteroids closely mimic in vivo intestinal epithelial responses to gut pathogens and are a promising model to study host–pathogen interactions in the pig gut. Insights obtained with this model might accelerate the design of veterinary therapeutics aimed at improving gut health.


Gut ◽  
2016 ◽  
Vol 66 (5) ◽  
pp. 823-838 ◽  
Author(s):  
Kristina Scheibe ◽  
Ingo Backert ◽  
Stefan Wirtz ◽  
Axel Hueber ◽  
Georg Schett ◽  
...  

Author(s):  
Bridie Jane Goggins ◽  
Kyra Minahan ◽  
Simonne Sherwin ◽  
Wai S Soh ◽  
Jennifer Pryor ◽  
...  

Intestinal epithelia are critical for maintaining gastrointestinal homeostasis. Epithelial barrier injury, causing inflammation and vascular damage, results in inflammatory hypoxia and thus healing occurs in an oxygen-restricted environment. The transcription factor hypoxia inducible factor (HIF)-1 regulates genes important for cell survival and repair, including the cell adhesion protein β1-integrin. Integrins function as αβ-dimers and α-integrin-matrix binding is critical for cell migration. We hypothesized that HIF-1 stabilization accelerates epithelial migration through integrin-dependent pathways. We aimed to examine functional and post-translational activity of α-integrins during HIF-1-mediated intestinal epithelial healing. Wound healing was assessed in T84 monolayers over 24 hours with/without prolyl-hydroxylase inhibitor (PHDi) (GB-004), which stabilizes HIF-1. Gene and protein expression were measured by RT-PCR and immunoblot, α-integrin localization was assessed by immunofluorescence. α-integrin function was assessed by antibody-mediated blockade and integrin-α6 regulation was determined by HIF-1α chromatin immunoprecipitation. Models of mucosal wounding and TNBS-induced colitis were used to examine integrin expression and localization in vivo. PHDi-treatment accelerated wound closure and migration within 12 hours, associated with increased integrin-α2 and α6 protein, but not α3. Functional blockade of integrins-α2 and α6 inhibited PHDi-mediated accelerated wound closure. HIF-1 bound directly to the integrin-α6 promoter. PHDi treatment accelerated mucosal healing, which was associated with increased α6 immunohistochemical staining in wound-associated epithelium and wound-adjacent tissue. PHDi-treatment increased α6 protein levels in colonocytes of TNBS mice and induced α6 staining in regenerating crypts and re-epithelialized inflammatory lesions. Together these data demonstrate a role for HIF-1 in regulating both integrin-α2 and α6 responses during intestinal epithelial healing.


2008 ◽  
Vol 295 (5) ◽  
pp. C1113-C1122 ◽  
Author(s):  
Anne E. Kruchten ◽  
Eugene W. Krueger ◽  
Yu Wang ◽  
Mark A. McNiven

Cortactin is an actin-binding protein that is overexpressed in many cancers and is a substrate for both tyrosine and serine/threonine kinases. Tyrosine phosphorylation of cortactin has been observed to increase cell motility and invasion in vivo, although it has been reported to have both positive and negative effects on actin polymerization in vitro. In contrast, serine phosphorylation of cortactin has been shown to stimulate actin assembly in vitro. Currently, the effects of cortactin serine phosphorylation on cell migration are unclear, and furthermore, how the distinct phospho-forms of cortactin may differentially contribute to cell migration has not been directly compared. Therefore, we tested the effects of different tyrosine and serine phospho-mutants of cortactin on lamellipodial protrusion, actin assembly within cells, and focal adhesion dynamics. Interestingly, while expression of either tyrosine or serine phospho-mimetic cortactin mutants resulted in increased lamellipodial protrusion and cell migration, these effects appeared to be via distinct processes. Cortactin mutants mimicking serine phosphorylation appeared to predominantly affect actin polymerization, whereas mutation of cortactin tyrosine residues resulted in alterations in focal adhesion turnover. Thus these findings provide novel insights into how distinct phospho-forms of cortactin may differentially contribute to actin and focal adhesion dynamics to control cell migration.


1996 ◽  
Vol 271 (5) ◽  
pp. G893-G903 ◽  
Author(s):  
A. Banan ◽  
J. Y. Wang ◽  
S. A. McCormack ◽  
L. R. Johnson

ntragastric administration of 3.4 M NaCl damages the gastric mucosa and increases the activity of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis. Polyamines are essential for the repair of gastric erosions. Little is known about the restitution of damaged mucosa except that cell migration is essential. Actin is the principal cytoskeletal protein and is essential for migration. This investigation determines the relationship between polyamines, actin, and gastric healing. Rats were fasted for 22 h and given 1.0 ml of 3.4 M NaCl intragastrically and killed 1, 2, 4, 8, and 10 h later. The mucosa was assayed for ODC activity and stained for G- and F-actin. F-actin was concentrated below the damaged mucosa at 1.5, 2, and 4 h. There was no increase in F-actin distribution at any time point, when NaCl-treated animals were given alpha-difluoromethylornithine (DFMO), a specific inhibitor of ODC. In addition, DFMO significantly prevented the healing of the mucosal lesions. Spermidine treatment after DFMO + NaCl significantly prevented the effects of DFMO. Cytochalasin D, a potent actin-disrupting drug, significantly delayed normal gastric mucosal healing. The endogenous polyamines increased significantly in NaCl animals. Data indicate that increases in polyamine synthesis after damage influence the distribution of F-actin in vivo, which may play a part in the healing of mucosal erosions.


2004 ◽  
Vol 24 (24) ◽  
pp. 10905-10922 ◽  
Author(s):  
Matthew Grove ◽  
Galina Demyanenko ◽  
Asier Echarri ◽  
Patricia A. Zipfel ◽  
Marisol E. Quiroz ◽  
...  

ABSTRACT The Abl-interactor (Abi) family of adaptor proteins has been linked to signaling pathways involving the Abl tyrosine kinases and the Rac GTPase. Abi proteins localize to sites of actin polymerization in protrusive membrane structures and regulate actin dynamics in vitro. Here we demonstrate that Abi2 modulates cell morphogenesis and migration in vivo. Homozygous deletion of murine abi2 produced abnormal phenotypes in the eye and brain, the tissues with the highest Abi2 expression. In the absence of Abi2, secondary lens fiber orientation and migration were defective in the eye, without detectable defects in proliferation, differentiation, or apoptosis. These phenotypes were consistent with the localization of Abi2 at adherens junctions in the developing lens and at nascent epithelial cell adherens junctions in vitro. Downregulation of Abi expression by RNA interference impaired adherens junction formation and correlated with downregulation of the Wave actin-nucleation promoting factor. Loss of Abi2 also resulted in cell migration defects in the neocortex and hippocampus, abnormal dendritic spine morphology and density, and severe deficits in short- and long-term memory. These findings support a role for Abi2 in the regulation of cytoskeletal dynamics at adherens junctions and dendritic spines, which is critical for intercellular connectivity, cell morphogenesis, and cognitive functions.


1995 ◽  
Vol 129 (2) ◽  
pp. 489-506 ◽  
Author(s):  
M L Hermiston ◽  
J I Gordon

A model system is described for defining the physiologic functions of mammalian cadherins in vivo. 129/Sv embryonic stem (ES) cells, stably transfected with a dominant negative N-cadherin mutant (NCAD delta) under the control of a promoter that only functions in postmitotic enterocytes during their rapid, orderly, and continuous migration up small intestinal villi, were introduced into normal C57B1/6 (B6) blastocysts. In adult B6<->129/Sv chimeric mice, each villus receives the cellular output of several surrounding monoclonal crypts. A polyclonal villus located at the boundary of 129/Sv- and B6-derived intestinal epithelium contains vertical coherent bands of NCAD delta-producing enterocytes plus adjacent bands of normal B6-derived enterocytes. A comparison of the biological properties of these cell populations established that NCAD delta disrupts cell-cell and cell-matrix contacts, increases the rate of migration of enterocytes along the crypt-villus axis, results in a loss of their differentiated polarized phenotype, and produces precocious entry into a death program. These data indicate that enterocytic cadherins are critical cell survival factors that actively maintain intestinal epithelial function in vivo.


Sign in / Sign up

Export Citation Format

Share Document