scholarly journals In vivo analysis of cadherin function in the mouse intestinal epithelium: essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death.

1995 ◽  
Vol 129 (2) ◽  
pp. 489-506 ◽  
Author(s):  
M L Hermiston ◽  
J I Gordon

A model system is described for defining the physiologic functions of mammalian cadherins in vivo. 129/Sv embryonic stem (ES) cells, stably transfected with a dominant negative N-cadherin mutant (NCAD delta) under the control of a promoter that only functions in postmitotic enterocytes during their rapid, orderly, and continuous migration up small intestinal villi, were introduced into normal C57B1/6 (B6) blastocysts. In adult B6<->129/Sv chimeric mice, each villus receives the cellular output of several surrounding monoclonal crypts. A polyclonal villus located at the boundary of 129/Sv- and B6-derived intestinal epithelium contains vertical coherent bands of NCAD delta-producing enterocytes plus adjacent bands of normal B6-derived enterocytes. A comparison of the biological properties of these cell populations established that NCAD delta disrupts cell-cell and cell-matrix contacts, increases the rate of migration of enterocytes along the crypt-villus axis, results in a loss of their differentiated polarized phenotype, and produces precocious entry into a death program. These data indicate that enterocytic cadherins are critical cell survival factors that actively maintain intestinal epithelial function in vivo.

2012 ◽  
Vol 24 (1) ◽  
pp. 222
Author(s):  
A. Kusanagi ◽  
J. Yamasaki ◽  
C. Iwatani ◽  
H. Tsuchiya ◽  
R. Torii

Human and mouse embryonic stem (ES) cells are derived from the inner cell mass of preimplantation blastocysts and human ES cells were long thought to be equivalent to mouse ES cells, despite clear morphological difference and different signalling pathways to maintain their pluripotency between these two ES cell types. Mouse ES cells depend on leukemia inhibitory factor (LIF) and bone morphogenic protein 4 (BMP4) signalling, whereas their human counterparts rely on basic fibroblast growth factor (bFGF) and activin A signalling. The biggest difference of two ES cells is the ability of chimera formation and mouse ES cells can contribute chimera but primate ES cells fails to do that. Monkey ES cells in primates only can be tested for chimera formation in vivo due to the ethical issue and cynomolgus monkey is the most common nonhuman primate to be used for the safety study of drug discoveries. The objective of this study was to develop novel cynomolgus monkey ES cells that have similar biological properties with mouse ES cell and our ultimate goal is to establish germline competent nonhuman primate ES cells. Ovarian stimulation and oocyte collection were carried out for the derivation of ES cells as previously described by Torii et al. Briefly, GnRH (0.9 mg/head) was administered to cynomolgus monkey and two weeks later, a micro infusion pump (iPRECIO™, Primetech Corp) contains FSH was implanted subcutaneously. Follicular aspiration was then performed 40 h after hCG injection and metaphase II oocytes were fertilized by intracytoplasmic sperm injection (ICSI). Cynomolgus monkey ES cells were then established under mouse ES cell conditions such as LIF/STAT signalling and a dome tree-dimensional (3D) morphology nonhuman primate ES cells were selected. On the other hands, ES cells that were established with the presence of basic FGF showed conventional layer-type morphology. Dome-type ES cells express pluripotent transcriptional factors such as Oct-3/4, Nonog and Sox2 as same as layer-type ES cells and both ES lines were capable of multilineage differentiations in vitro after embryoid body formation. Dome-type nonhuman ES cells can also form teratomas and differentiated into all three germ layers when grafted into immunodeficiency mice. For fluorescent gene delivery to nonhuman primate ES cells, feeder-free condition was applied and CAG-GFP vector was transfected into ES cells using Neon electroporation system (Invitrogen Inc.) for the tracing ES cells in the transplantation study. In this study, we have established dome-type ES cell lines that similar to mouse ES cells in morphology and signalling pathway. Dome-type nonhuman primate ES cells express pluripotent gene markers and prove their pluripotency both of in vitro and in vivo, in addition, these modifications would be important to create germline competent ES cells.


Development ◽  
2000 ◽  
Vol 127 (17) ◽  
pp. 3805-3813 ◽  
Author(s):  
H. Lickert ◽  
C. Domon ◽  
G. Huls ◽  
C. Wehrle ◽  
I. Duluc ◽  
...  

During mammalian development, the Cdx1 homeobox gene exhibits an early period of expression when the embryonic body axis is established, and a later period where expression is restricted to the embryonic intestinal endoderm. Cdx1 expression is maintained throughout adulthood in the proliferative cell compartment of the continuously renewed intestinal epithelium, the crypts. In this study, we provide evidence in vitro and in vivo that Cdx1 is a direct transcriptional target of the Wnt/(beta)-catenin signaling pathway. Upon Wnt stimulation, expression of Cdx1 can be induced in mouse embryonic stem (ES) cells as well as in undifferentiated rat embryonic endoderm. Tcf4-deficient mouse embryos show abrogation of Cdx1 protein in the small intestinal epithelium, making Tcf4 the likely candidate to transduce Wnt signal in this part of gut. The promoter region of the Cdx1 gene contains several Tcf-binding motifs, and these bind Tcf/Lef1/(beta)-catenin complexes and mediate (beta)-catenin-dependent transactivation. The transcriptional regulation of the homeobox gene Cdx1 in the intestinal epithelium by Wnt/(beta)-catenin signaling underlines the importance of this signaling pathway in mammalian endoderm development.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Bjarne Vermeire ◽  
Liara M. Gonzalez ◽  
Robert J. J. Jansens ◽  
Eric Cox ◽  
Bert Devriendt

AbstractSmall intestinal organoids, or enteroids, represent a valuable model to study host–pathogen interactions at the intestinal epithelial surface. Much research has been done on murine and human enteroids, however only a handful studies evaluated the development of enteroids in other species. Porcine enteroid cultures have been described, but little is known about their functional responses to specific pathogens or their associated virulence factors. Here, we report that porcine enteroids respond in a similar manner as in vivo gut tissues to enterotoxins derived from enterotoxigenic Escherichia coli, an enteric pathogen causing postweaning diarrhoea in piglets. Upon enterotoxin stimulation, these enteroids not only display a dysregulated electrolyte and water balance as shown by their swelling, but also secrete inflammation markers. Porcine enteroids grown as a 2D-monolayer supported the adhesion of an F4+ ETEC strain. Hence, these enteroids closely mimic in vivo intestinal epithelial responses to gut pathogens and are a promising model to study host–pathogen interactions in the pig gut. Insights obtained with this model might accelerate the design of veterinary therapeutics aimed at improving gut health.


Development ◽  
1992 ◽  
Vol 116 (Supplement) ◽  
pp. 157-165 ◽  
Author(s):  
R. S. P. Beddington ◽  
P. Rashbass ◽  
V. Wilson

Mouse embryos that are homozygous for the Brachyury (T) deletion die at mid-gestation. They have prominent defects in the notochord, the allantois and the primitive streak. Expression of the T gene commences at the onset of gastrulation and is restricted to the primitive streak, mesoderm emerging from the streak, the head process and the notochord. Genetic evidence has suggested that there may be an increasing demand for T gene function along the rostrocaudal axis. Experiments reported here indicate that this may not be the case. Instead, the gradient in severity of the T defect may be caused by defective mesoderm cell movements, which result in a progressive accumulation of mesoderm cells near the primitive streak. Embryonic stem (ES) cells which are homozygous for the T deletion have been isolated and their differentiation in vitro and in vivo compared with that of heterozygous and wild-type ES cell lines. In +/+ ↔ T/T ES cell chimeras the Brachyury phenotype is not rescued by the presence of wild-type cells and high level chimeras show most of the features characteristic of intact T/T mutants. A few offspring from blastocysts injected with T/T ES cells have been born, several of which had greatly reduced or abnormal tails. However, little or no ES cell contribution was detectable in these animals, either as coat colour pigmentation or by isozyme analysis. Inspection of potential +/+ ↔ T/T ES cell chimeras on the 11th or 12th day of gestation, stages later than that at which intact T/T mutants die, revealed the presence of chimeras with caudal defects. These chimeras displayed a gradient of ES cell colonisation along the rostrocaudal axis with increased colonisation of caudal regions. In addition, the extent of chimerism in ectodermal tissues (which do not invaginate during gastrulation) tended to be higher than that in mesodermal tissues (which are derived from cells invaginating through the primitive streak). These results suggest that nascent mesoderm cells lacking the T gene are compromised in their ability to move away from the primitive streak. This indicates that one function of the T genemay be to regulate cell adhesion or cell motility properties in mesoderm cells. Wild-type cells in +/+ ↔ T/T chimeras appear to move normally to populate trunk and head mesoderm, suggesting that the reduced motility in T/T cells is a cell autonomous defect


Development ◽  
2002 ◽  
Vol 129 (2) ◽  
pp. 539-549 ◽  
Author(s):  
Carrie A. Adelman ◽  
Subrata Chattopadhyay ◽  
James J. Bieker

Erythroid cell-specific gene regulation during terminal differentiation is controlled by transcriptional regulators, such as EKLF and GATA1, that themselves exhibit tissue-restricted expression patterns. Their early expression, already in evidence within multipotential hematopoietic cell lines, has made it difficult to determine what extracellular effectors and transduction mechanisms might be directing the onset of their own transcription during embryogenesis. To circumvent this problem, we have taken the novel approach of investigating whether the ability of embryonic stem (ES) cells to mimic early developmental patterns of cellular expression during embryoid body (EB) differentiation can address this issue. We first established conditions whereby EBs could form efficiently in the absence of serum. Surprisingly, in addition to mesoderm, these cells expressed hemangioblast and hematopoietic markers. However, they did not express the committed erythroid markers EKLF and GATA1, nor the terminally differentiated β-like globin markers. Using this system, we determined that EB differentiation in BMP4 was necessary and sufficient to recover EKLF and GATA1 expression and could be further stimulated by the inclusion of VEGF, SCF, erythropoietin and thyroid hormone. EBs were competent to respond to BMP4 only until day 4 of differentiation, which coincides with the normal onset of EKLF expression. The direct involvement of the BMP/Smad pathway in this induction process was further verified by showing that erythroid expression of a dominant negative BMP1B receptor or of the inhibitory Smad6 protein prevented induction of EKLF or GATA1 even in the presence of serum. Although Smad1, Smad5 and Smad8 are all expressed in the EBs, BMP4 induction of EKLF and GATA1 transcription is not immediate. These data implicate the BMP/Smad induction system as being a crucial pathway to direct the onset of EKLF and GATA1 expression during hematopoietic differentiation and demonstrate that EB differentiation can be manipulated to study induction of specific genes that are expressed early within a lineage.


2018 ◽  
Vol 20 (1) ◽  
pp. 19 ◽  
Author(s):  
Yadong Wei ◽  
Krishan Chhiba ◽  
Fengrui Zhang ◽  
Xujun Ye ◽  
Lihui Wang ◽  
...  

Sialic acid-binding Ig-like lectin 8 (Siglec-8) is expressed on the surface of human eosinophils, mast cells, and basophils—cells that participate in allergic and other diseases. Ligation of Siglec-8 by specific glycan ligands or antibodies triggers eosinophil death and inhibits mast cell degranulation; consequences that could be leveraged as treatment. However, Siglec-8 is not expressed in murine and most other species, thus limiting preclinical studies in vivo. Based on a ROSA26 knock-in vector, a construct was generated that contains the CAG promoter, a LoxP-floxed-Neo-STOP fragment, and full-length Siglec-8 cDNA. Through homologous recombination, this Siglec-8 construct was targeted into the mouse genome of C57BL/6 embryonic stem (ES) cells, and chimeric mice carrying the ROSA26-Siglec-8 gene were generated. After cross-breeding to mast cell-selective Cre-recombinase transgenic lines (CPA3-Cre, and Mcpt5-Cre), the expression of Siglec-8 in different cell types was determined by RT-PCR and flow cytometry. Peritoneal mast cells (dual FcεRI+ and c-Kit+) showed the strongest levels of surface Siglec-8 expression by multicolor flow cytometry compared to expression levels on tissue-derived mast cells. Siglec-8 was seen on a small percentage of peritoneal basophils, but not other leukocytes from CPA3-Siglec-8 mice. Siglec-8 mRNA and surface protein were also detected on bone marrow-derived mast cells. Transgenic expression of Siglec-8 in mice did not affect endogenous numbers of mast cells when quantified from multiple tissues. Thus, we generated two novel mouse strains, in which human Siglec-8 is selectively expressed on mast cells. These mice may enable the study of Siglec-8 biology in mast cells and its therapeutic targeting in vivo.


2002 ◽  
Vol 22 (10) ◽  
pp. 3509-3517 ◽  
Author(s):  
Hitoshi Okada ◽  
Woong-Kyung Suh ◽  
Jianping Jin ◽  
Minna Woo ◽  
Chunying Du ◽  
...  

ABSTRACT The mitochondrial proapoptotic protein Smac/DIABLO has recently been shown to potentiate apoptosis by counteracting the antiapoptotic function of the inhibitor of apoptosis proteins (IAPs). In response to apoptotic stimuli, Smac is released into the cytosol and promotes caspase activation by binding to IAPs, thereby blocking their function. These observations have suggested that Smac is a new regulator of apoptosis. To better understand the physiological function of Smac in normal cells, we generated Smac-deficient (Smac−/− ) mice by using homologous recombination in embryonic stem (ES) cells. Smac−/− mice were viable, grew, and matured normally and did not show any histological abnormalities. Although the cleavage in vitro of procaspase-3 was inhibited in lysates of Smac−/− cells, all types of cultured Smac−/− cells tested responded normally to all apoptotic stimuli applied. There were also no detectable differences in Fas-mediated apoptosis in the liver in vivo. Our data strongly suggest the existence of a redundant molecule or molecules capable of compensating for a loss of Smac function.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Jonathan H. M. van der Meer ◽  
Ruben J. de Boer ◽  
Bartolomeus J. Meijer ◽  
Wouter L. Smit ◽  
Jacqueline L. M. Vermeulen ◽  
...  

AbstractThe epithelial signaling pathways involved in damage and regeneration, and neoplastic transformation are known to be similar. We noted upregulation of argininosuccinate synthetase (ASS1) in hyperproliferative intestinal epithelium. Since ASS1 leads to de novo synthesis of arginine, an important amino acid for the growth of intestinal epithelial cells, its upregulation can contribute to epithelial proliferation necessary to be sustained during oncogenic transformation and regeneration. Here we investigated the function of ASS1 in the gut epithelium during tissue regeneration and tumorigenesis, using intestinal epithelial conditional Ass1 knockout mice and organoids, and tissue specimens from colorectal cancer patients. We demonstrate that ASS1 is strongly expressed in the regenerating and Apc-mutated intestinal epithelium. Furthermore, we observe an arrest in amino acid flux of the urea cycle, which leads to an accumulation of intracellular arginine. However, loss of epithelial Ass1 does not lead to a reduction in proliferation or increase in apoptosis in vivo, also in mice fed an arginine-free diet. Epithelial loss of Ass1 seems to be compensated by altered arginine metabolism in other cell types and the liver.


2000 ◽  
Vol 151 (4) ◽  
pp. 763-778 ◽  
Author(s):  
Mark R. Frey ◽  
Jennifer A. Clark ◽  
Olga Leontieva ◽  
Joshua M. Uronis ◽  
Adrian R. Black ◽  
...  

Members of the protein kinase C (PKC) family of signal transduction molecules have been widely implicated in regulation of cell growth and differentiation, although the underlying molecular mechanisms involved remain poorly defined. Using combined in vitro and in vivo intestinal epithelial model systems, we demonstrate that PKC signaling can trigger a coordinated program of molecular events leading to cell cycle withdrawal into G0. PKC activation in the IEC-18 intestinal crypt cell line resulted in rapid downregulation of D-type cyclins and differential induction of p21waf1/cip1 and p27kip1, thus targeting all of the major G1/S cyclin-dependent kinase complexes. These events were associated with coordinated alterations in expression and phosphorylation of the pocket proteins p107, pRb, and p130 that drive cells to exit the cell cycle into G0 as indicated by concomitant downregulation of the DNA licensing factor cdc6. Manipulation of PKC isozyme levels in IEC-18 cells demonstrated that PKCα alone can trigger hallmark events of cell cycle withdrawal in intestinal epithelial cells. Notably, analysis of the developmental control of cell cycle regulatory molecules along the crypt–villus axis revealed that PKCα activation is appropriately positioned within intestinal crypts to trigger this program of cell cycle exit–specific events in situ. Together, these data point to PKCα as a key regulator of cell cycle withdrawal in the intestinal epithelium.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Weidong Zhu ◽  
Ichiro Shiojima ◽  
Li Zhi ◽  
Hiroyuki Ikeda ◽  
Masashi Yoshida ◽  
...  

Insulin-like growth factor-binding proteins (IGFBPs) bind to and modulate the actions of insulin-like growth factors (IGFs). Although some of the effects of IGFBPs appear to be independent of IGFs, the precise mechanisms of IGF-independent actions of IGFBPs are largely unknown. In this study we demonstrate that IGFBP-4 is a novel cardiogenic growth factor. IGFBP-4 enhanced cardiomyocyte differentiation of P19CL6 embryonal carcinoma cells and embryonic stem (ES) cells in vitro. Conversely, siRNA-mediated knockdown of IGFBP-4 in P19CL6 cells or ES cells attenuated cardiomyocyte differentiation, and morpholino-mediated knockdown of IGFBP-4 in Xenopus embryos resulted in severe cardiac defects and complete absence of the heart in extreme cases. We also demonstrate that the cardiogenic effect of IGFBP-4 was independent of its IGF-binding activity but was mediated by the inhibitory effect on canonical Wnt signaling. IGFBP-4 physically interacted with a Wnt receptor Frizzled 8 (Frz8) and a Wnt co-receptor low-density lipoprotein receptor-related protein 6 (LRP6), and inhibited the binding of Wnt3A to Frz8 and LRP6. Moreover, the cardiogenic defects induced by IGFBP-4 knockdown both in vitro and in vivo was rescued by simultaneous inhibition of canonical Wnt signaling. Thus, IGFBP-4 is an inhibitor of the canonical Wnt signaling, and Wnt inhibition by IGFBP-4 is required for cardiogenesis. The present study provides a molecular link between IGF signaling and Wnt signaling, and suggests that IGFBP-4 may be a novel therapeutic target for heart diseases.


Sign in / Sign up

Export Citation Format

Share Document