IL-5 contributes to worm expulsion and muscle hypercontractility in a primaryT. spiralisinfection

1999 ◽  
Vol 277 (2) ◽  
pp. G400-G408 ◽  
Author(s):  
Bruce A. Vallance ◽  
Patricia A. Blennerhassett ◽  
Yikang Deng ◽  
Klaus I. Matthaei ◽  
Ian G. Young ◽  
...  

Enteric nematode infections lead to increased interleukin (IL)-5 expression, eosinophilic inflammation, and intestinal smooth muscle hypercontractility. Although eosinophils release inflammatory mediators that cause smooth muscle contraction, the role of IL-5 and eosinophils in enteric smooth muscle hypercontractility is unclear. IL-5-deficient mice and their wild-type controls were infected with the nematode Trichinella spiralis. Intestinal parasites and eosinophils were counted, and jejunal longitudinal muscle contractility was assessed. During infection, IL-5 gene expression increased significantly in wild-type mice and was accompanied by significant intestinal eosinophilia in wild-type but not IL-5-deficient mice. Although both strains developed increased muscle contractility during infection, contraction was significantly less in the IL-5-deficient mice at days 16 and 21 postinfection. In addition, parasite expulsion was transiently delayed at day 16 in IL-5-deficient mice. Thus, in the nematode-infected mouse, IL-5 appears essential for intestinal eosinophilia and contributes to, but is not essential for, the development of muscle hypercontractility. IL-5 also appears to play a minor role in expelling a primary T. spiralis infection from the gut.

1986 ◽  
Vol 64 (11) ◽  
pp. 1361-1367 ◽  
Author(s):  
M. S. Kannan ◽  
C. Davis ◽  
A. Sankaranarayanan ◽  
A. R. C. Ladenius ◽  
L. Kannan

The dog model of ascaris airway sensitivity was chosen because of its frequency and its immunologic similarity to the human atopic asthmatic state. We studied the mediators of the antigen-induced airway response in vitro and the alterations in the in vivo and in vitro responsiveness to spasmogens evoked by antigen challenge. A myogenic basis of altered reactivity was suggested by the following: (i) tetrodotoxin-insensitive spontaneous active tone; (ii) phasic contractions of airway smooth muscle; and (iii) responsiveness to leukotrienes C4 and D4. The pharmacologic characteristics of the antigen-induced airway smooth muscle contraction in vitro were similar to those induced by arachidonic acid and the leukotrienes only in some respects but were clearly different from those induced by compound 48/80. This suggested a predominant role for arachidonate lipoxygenase products. Histamine apeared to play a minor role in the antigen response. Comparisons were made between antigen-induced responses of actively and passively sensitized airways tissues. In the latter, histamine release appeared to contribute to the initial antigen-induced contraction and, unlike in actively sensitized airways, the responses were easily densensitized to repeated challenge. Alterations of airway responsiveness were demonstrated in vivo to acetylcholine and 5-HT following antigen challenge of highly ascaris-sensitive dogs. In vitro studies of passively sensitized muscle showed selectively enhanced response to 5-HT following antigen challenge. These studies suport the presence of altered myogenic properties of airway smooth muscle and nonspecific increased airway responsiveness in this animal model.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 147
Author(s):  
Romuald Brice Babou Kammoe ◽  
Gilles Kauffenstein ◽  
Julie Pelletier ◽  
Bernard Robaye ◽  
Jean Sévigny

Nucleotides released by smooth muscle cells (SMCs) and by innervating nerve terminals activate specific P2 receptors and modulate bladder contraction. We hypothesized that cell surface enzymes regulate SMC contraction in mice bladder by controlling the concentration of nucleotides. We showed by immunohistochemistry, enzymatic histochemistry, and biochemical activities that nucleoside triphosphate diphosphohydrolase-1 (NTPDase1) and ecto-5′-nucleotidase were the major ectonucleotidases expressed by SMCs in the bladder. RT-qPCR revealed that, among the nucleotide receptors, there was higher expression of P2X1, P2Y1, and P2Y6 receptors. Ex vivo, nucleotides induced a more potent contraction of bladder strips isolated from NTPDase1 deficient (Entpd1−/−) mice compared to wild type controls. The strongest responses were obtained with uridine 5′-triphosphate (UTP) and uridine 5′-diphosphate (UDP), suggesting the involvement of P2Y6 receptors, which was confirmed with P2ry6−/− bladder strips. Interestingly, this response was reduced in female bladders. Our results also suggest the participation of P2X1, P2Y2 and/or P2Y4, and P2Y12 in these contractions. A reduced response to the thromboxane analogue U46619 was also observed in wild type, Entpd1−/−, and P2ry6−/− female bladders showing another difference due to sex. In summary, NTPDase1 modulates the activation of nucleotide receptors in mouse bladder SMCs, and contractions induced by P2Y6 receptor activation were weaker in female bladders.


2015 ◽  
Vol 67 (1) ◽  
pp. 187-192 ◽  
Author(s):  
Aleksandra Nikolic-Kokic ◽  
Zorana Orescanin-Dusic ◽  
Ivan Spasojevic ◽  
Dusko Blagojevic ◽  
Zorica Stevic ◽  
...  

In this work we compared the mutated liver copper zinc-containing superoxide dismutase (SOD1) protein G93A of the transgenic rat model of familial amyotrophic lateral sclerosis (FALS), to wild-type (WT) rat SOD1. We examined their enzymatic activities and effects on isometric contractions of uteri of healthy virgin rats. G93A SOD1 showed a slightly higher activity than WT SOD1 and, in contrast to WT SOD1, G93A SOD1 did not induce smooth muscle relaxation. This result indicates that effects on smooth muscles are not related to SOD1 enzyme activity and suggest that heterodimers of G93A SOD1 form an ion-conducting pore that diminishes the relaxatory effects of SOD1. We propose that this type of pathogenic feedback affects neurons in FALS.


2021 ◽  
Author(s):  
Anthony Khong ◽  
Tyler Matheny ◽  
Thao Ngoc Huynh ◽  
Vincent Babl ◽  
Roy Parker

Recent studies have argued that the m6A modification of mRNAs promotes mRNA recruitment to stress granules through the interaction with YTHDF proteins (Anders et al., 2018; Ries et al., 2019). However, mRNAs that contain multiple m6A modified sites partition similarly into stress granules in both wild-type and m6A-deficient cells by single-molecule FISH suggesting m6A modifications play a minor role in mRNA partitioning into stress granules. Moreover, multiple linear regression analysis suggests m6A modification plays a minimal role in stress granule recruitment. Finally, the artificial tethering of 25 YTHDF proteins on reporter mRNAs leads to only a modest increase in mRNA partitioning to stress granules. These results indicate m6A modification makes a small, but measurable, contribution to recruiting specific mRNAs to stress granules.


2020 ◽  
Vol 21 (2) ◽  
pp. 644 ◽  
Author(s):  
Eva B. Znalesniak ◽  
Franz Salm ◽  
Werner Hoffmann

TFF1 is a peptide of the gastric mucosa co-secreted with the mucin MUC5AC. It plays a key role in gastric mucosal protection and repair. Tff1-deficient (Tff1KO) mice obligatorily develop antropyloric adenoma and about 30% progress to carcinomas. Thus, these mice represent a model for gastric tumorigenesis. Here, we compared the expression of selected genes in Tff1KO mice and the corresponding wild-type animals (RT-PCR analyses). Furthermore, we systematically investigated the different molecular forms of Tff1 and its heterodimer partner gastrokine-2 (Gkn2) in the stomach (Western blot analyses). As a hallmark, a large portion of murine Tff1 occurs in a monomeric form. This is unexpected because of its odd number of seven cysteine residues. Probably the three conserved acid amino acid residues (EEE) flanking the 7th cysteine residue allow monomeric secretion. As a consequence, the free thiol of monomeric Tff1 could have a protective scavenger function, e.g., for reactive oxygen/nitrogen species. Furthermore, a minor subset of Tff1 forms a disulfide-linked heterodimer with IgG Fc binding protein (Fcgbp). Of special note, in Tff1KO animals a homodimeric form of Gkn2 was observed. In addition, Tff1KO animals showed strongly reduced Tff2 transcript and protein levels, which might explain their increased sensitivity to Helicobacter pylori infection.


2002 ◽  
Vol 93 (4) ◽  
pp. 1296-1300 ◽  
Author(s):  
Debra J. Turner ◽  
Peter B. Noble ◽  
Matthew P. Lucas ◽  
Howard W. Mitchell

Increased smooth muscle contractility or reduced smooth muscle mechanical loads could account for the excessive airway narrowing and hyperresponsiveness seen in asthma. These mechanisms were investigated by using an allergen-induced porcine model of airway hyperresponsiveness. Airway narrowing to electric field stimulation was measured in isolated bronchial segments, over a range of transmural pressures (0–20 cmH2O). Contractile responses to ACh were measured in bronchial segments and in isolated tracheal smooth muscle strips isolated from control and test (ovalbumin sensitized and challenged) pigs. Test airways narrowed less than controls ( P < 0.0001). Test pigs showed reduced contractility to ACh, both in isolated bronchi ( P < 0.01) and smooth muscle strips ( P < 0.01). Thus isolated airways from pigs exhibiting airway hyperresponsiveness in vivo are hyporesponsive in vitro. The decreased narrowing in bronchi from hyperresponsive pigs may be related to decreased smooth muscle contractility. These data suggest that mechanisms external to the airway wall may be important to the hyperresponsive nature of sensitized lungs.


1997 ◽  
Vol 272 (2) ◽  
pp. G321-G327 ◽  
Author(s):  
B. A. Vallance ◽  
P. A. Blennerhassett ◽  
S. M. Collins

Intestinal nematode infections are accompanied by mucosal inflammation and an increase in propulsive motor activity that may contribute to parasite eviction from the gut. To examine whether differences in worm expulsion correspond to the increased intestinal muscle contractility that accompanies nematode infection, we studied mice with genetically determined differences in their ability to expel the nematode parasite Trichinella spiralis. Specifically, we examined isometric contraction of longitudinal muscle, worm counts, and inflammation, as measured by myeloperoxidase activity, in two strains of mice infected with T. spiralis. The strong responder strain, NIH Swiss, expelled the parasites by day 16 postinfection, whereas the poorer responding B10.BR strain was still heavily infected by day 21 postinfection. However, both strains developed similar increases in jejunal myeloperoxidase activity. Both strains demonstrated increased isometric tension development after infection, but peak tension occurred earlier in NIH Swiss mice (day 8 vs. day 12 postinfection) and was of significantly greater magnitude than in B10.BR mice. We conclude that the ability to expel T. spiralis from the small bowel is not related to the degree of granulocyte-dependent mucosal inflammation but is reflected in the magnitude of the accompanying increase in force generation by intestinal smooth muscle.


2006 ◽  
Vol 291 (2) ◽  
pp. L265-L271 ◽  
Author(s):  
Dae Hyun Lim ◽  
Jae Youn Cho ◽  
Marina Miller ◽  
Kirsti McElwain ◽  
Shauna McElwain ◽  
...  

Matrix metalloproteinases (MMPs) are a family of extracellular proteases that are responsible for the degradation of the extracellular matrix during tissue remodeling. We have used a mouse model of allergen-induced airway remodeling to determine whether MMP-9 plays a role in airway remodeling. MMP-9-deficient and wild-type (WT) mice were repetitively challenged intranasally with ovalbumin (OVA) antigen to develop features of airway remodeling including peribronchial fibrosis and increased thickness of the peribronchial smooth muscle layer. OVA-challenged MMP-9-deficient mice had less peribronchial fibrosis and total lung collagen compared with OVA-challenged WT mice. There was no reduction in mucus expression, smooth muscle thickness, or airway responsiveness in OVA-challenged MMP-9-deficient compared with OVA-challenged WT mice. OVA-challenged MMP-9-deficient mice had reduced levels of bronchoalveolar lavage (BAL) regulated on activation, normal T cell expressed, and secreted (RANTES), as well as reduced numbers of BAL and peribronchial eosinophils compared with OVA-challenged WT mice. There were no significant difference in levels of BAL eotaxin, thymus- and activation-regulated chemokine (TARC), or macrophage-derived chemokine (MDC) in OVA-challenged WT compared with MMP-9-deficient mice. Overall, this study demonstrates that MMP-9 may play a role in mediating selected aspects of allergen-induced airway remodeling (i.e., modest reduction in levels of peribronchial fibrosis) but does not play a significant role in mucus expression, smooth muscle thickness, or airway responsiveness.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3297-3297
Author(s):  
Kyle J. Eash ◽  
Jacquelyn M. Means ◽  
Jill R. Woloszynek ◽  
Fulu Liu ◽  
Daniel C. Link

Abstract The number of circulating neutrophils is tightly regulated in order to effectively protect against microbial pathogens while minimizing damage to host tissue. Homeostatic control of neutrophils in the blood is achieved through a balance of neutrophil production, release from the bone marrow, and clearance from the circulation. Accumulating evidence suggests that signaling by the chemokine CXCL12, through its major receptor CXCR4, may play a key role in controlling neutrophil homeostasis. Indeed, gain-of-function mutations of CXCR4 are responsible for most cases of WHIM syndrome, a syndrome that features impaired neutrophil release from the bone marrow. Conversely, we previously reported that mice carrying a myeloid-specific deletion of CXCR4 (CXCR4f/−LysM+/Cre mice) display constitutive neutrophil release. Moreover, we provided data suggesting that neutrophil mobilization by G-CSF or Groβ are dependent on CXCR4 signaling, as neutrophil mobilization by these agents was absent in CXCR4f/−LysM+/Cre mice. These data firmly establish CXCR4 signaling as a key regulator of neutrophil release from the bone marrow under basal and stress conditions. Though controversial, there also is evidence that CXCR4 may play a role in neutrophil clearance from the blood by selectively trapping and removing aged neutrophils in the bone marrow. In this study, we examine the role of CXCR4 in neutrophil clearance using CXCR4f/−LysM+/Cre mice. Strain-matched wild type or CXCR4f/−LysM+/Cre mice were treated with a single injection of BrdU to label newly synthesized neutrophils. A similar percentage of myeloid cells in the bone marrow were labeled in wild type and CXCR4f/−LysM+/Cre mice, suggesting that the loss of CXCR4 does not affect granulocytic cell proliferation. Consistent with its role in regulating neutrophil release, the transit time for labeled neutrophils to appear in the circulation was significantly reduced in CXCR4f/−LysM+/Cre mice (45 hours) compared with wild type mice (72 hours). The half-life (t1/2 ) of neutrophils in the blood was calculated using the formula N=N0e−λt where N0 = the peak number of labeled cells, N = the number of cells at time t and λ = the decay constant. Surprisingly, no difference in the circulating neutrophil half-life was observed in CXCR4f/−LysM+/Cre mice compared to wild type mice (18.3 ± 13.6 hours vs.12.7 ± 9.5 hours respectively, P=0.43). We next performed adoptive transfer experiments to determine the site of neutrophil clearance. Specifically, an equivalent number of bone marrow neutrophils from wild type or CXCR4f/−LysM+/Cre mice were injected intravenously into recipient mice. Donor neutrophils were identified based on differential Ly5 gene expression. By 3 hours post-infusion, the majority of donor neutrophils were cleared from the blood. Compared to wild type neutrophils, CXCR4−/− neutrophils showed reduced homing to the bone marrow [number of donor neutrophils per femur: 6.7 ± 0.3 x 104 (wild type) compared to 2.6 ± 0.8 x 104 (CXCR4−/−); P <0.05]. Conversely, an increased number of CXCR4−/− neutrophils were present in the spleen. These data confirm that CXCR4 expression on neutrophils plays a role in the homing of neutrophils back to the bone marrow. However, neutrophil removal in the bone marrow appears to play only a minor role in neutrophil clearance from the blood, as neutrophil half-life was not significantly affected by the loss of CXCR4.


2015 ◽  
Vol 309 (7) ◽  
pp. L736-L746 ◽  
Author(s):  
David I. Kasahara ◽  
Joel A. Mathews ◽  
Chan Y. Park ◽  
Youngji Cho ◽  
Gabrielle Hunt ◽  
...  

Ozone causes airway hyperresponsiveness (AHR) and pulmonary inflammation. Rho kinase (ROCK) is a key regulator of smooth muscle cell contraction and inflammatory cell migration. To determine the contribution of the two ROCK isoforms ROCK1 and ROCK2 to ozone-induced AHR, we exposed wild-type, ROCK1+/−, and ROCK2+/− mice to air or ozone (2 ppm for 3 h) and evaluated mice 24 h later. ROCK1 or ROCK2 haploinsufficiency did not affect airway responsiveness in air-exposed mice but significantly reduced ozone-induced AHR, with a greater reduction in ROCK2+/− mice despite increased bronchoalveolar lavage (BAL) inflammatory cells in ROCK2+/− mice. Compared with wild-type mice, ozone-induced increases in BAL hyaluronan, a matrix protein implicated in ozone-induced AHR, were lower in ROCK1+/− but not ROCK2+/− mice. Ozone-induced increases in other inflammatory moieties reported to contribute to ozone-induced AHR (IL-17A, osteopontin, TNFα) were not different in wild-type vs. ROCK1+/− or ROCK2+/− mice. We also observed a dose-dependent reduction in ozone-induced AHR after treatment with the ROCK1/ROCK2 inhibitor fasudil, even though fasudil was administered after induction of inflammation. Ozone increased pulmonary expression of ROCK2 but not ROCK1 or RhoA. A ROCK2 inhibitor, SR3677, reduced contractile forces in primary human airway smooth muscle cells, confirming a role for ROCK2 in airway smooth muscle contraction. Our results demonstrate that ozone-induced AHR requires ROCK. Whereas ROCK1-dependent changes in hyaluronan may contribute to ROCK1's role in O3-induced AHR, the role of ROCK2 is downstream of inflammation, likely at the level of airway smooth muscle contraction.


Sign in / Sign up

Export Citation Format

Share Document