Dextran sulfate sodium-induced murine colitis activates NF-κB and increases galanin-1 receptor expression

2000 ◽  
Vol 278 (5) ◽  
pp. G797-G804 ◽  
Author(s):  
Jorge A. Marrero ◽  
Kristina A. Matkowskyj ◽  
Kenny Yung ◽  
Gail Hecht ◽  
Richard V. Benya

Galanin is widely distributed in enteric nerve terminals and acts to modulate intestinal motility by altering smooth muscle contraction. This ligand causes Cl−secretion when colonic epithelial cells express the galanin-1 receptor (Gal1-R) subtype. Because Gal1-R expression by colonic epithelia is upregulated by the transcription factor nuclear factor-κB (NF-κB), increasingly appreciated as critical in the pathophysiology of inflammatory bowel disease, we wondered whether the diarrhea associated with this condition could be due to NF-κB-mediated increases in Gal1-R expression. To test this hypothesis, we provided oral dextran sulfate sodium (DSS) to C57BL/6J mice. Although Gal1-R are not normally expressed by epithelial cells lining the mouse colon, DSS treatment resulted in increased NF-κB activation and Gal1-R expression. Whereas galanin had no effect on murine colonic tissues studied ex vivo, it progressively increased short-circuit current and colonic fluid secretion in DSS-treated mice. Concomitant parenteral administration of the NF-κB inhibitor dexamethasone attenuated the activation of this transcription factor by DSS, inhibiting the increase in Gal1-R expression. Although Gal1-R-specific antagonists do not exist, intracolonic administration of commercially available galanin antibody diminished the DSS-induced increase in colonic fluid accumulation. Overall, these data demonstrate that a significant component of the excessive fluid secretion observed in DSS-treated mice is due to increased Gal1-R expression.

2002 ◽  
Vol 282 (2) ◽  
pp. L226-L236 ◽  
Author(s):  
Henry Danahay ◽  
Hazel Atherton ◽  
Gareth Jones ◽  
Robert J. Bridges ◽  
Christopher T. Poll

Interleukin (IL)-13 has been associated with asthma, allergic rhinitis, and chronic sinusitis, all conditions where an imbalance in epithelial fluid secretion and absorption could impact upon the disease. We have investigated the effects of IL-13 on the ion transport characteristics of human bronchial epithelial cells cultured at an apical-air interface. Ussing chamber studies indicated that 48 h pretreatment with IL-13 or IL-4 significantly reduced the basal short-circuit current ( I sc) and inhibited the amiloride-sensitive current by >98%. Furthermore, the I scresponses were increased by more than six- and twofold over control values when stimulated with UTP or forskolin, respectively, after cytokine treatment. The IL-13-enhanced response to UTP/ionomycin was sensitive to bumetanide and DIDS and was reduced in a low-chloride, bicarbonate-free solution. Membrane permeablization studies indicated that IL-13 induced the functional expression of an apical Ca2+-activated anion conductance and that changes in apical or basolateral K+ conductances could not account for the increased I sc responses to UTP or ionomycin. The results indicate that IL-13 converts the human bronchial epithelium from an absorptive to a secretory phenotype that is the result of loss of amiloride-sensitive current and an increase in a DIDS-sensitive apical anion conductance.


1991 ◽  
Vol 261 (2) ◽  
pp. L188-L194 ◽  
Author(s):  
P. I. Plews ◽  
Z. A. Abdel-Malek ◽  
C. A. Doupnik ◽  
G. D. Leikauf

The endothelins (ET) are a group of isopeptides produced by a number of cells, including canine tracheal epithelial cells. Because these compounds are endogenous peptides that may activate eicosanoid metabolism, we investigated the effects of ET on Cl secretion in canine tracheal epithelium. Endothelin 1 (ET-1) was found to produce a dose-dependent change in short-circuit current (Isc) that increased slowly and reached a maximal value within 10-15 min. When isopeptides of ET were compared, 300 nM ET-1 and ET-2 produced comparable maximal increases in Isc, whereas ET-3 produced smaller changes in Isc (half-maximal concentrations of 2.2, 7.2, and 10.4 nM, respectively). Ionic substitution of Cl with nontransported anions, iodide and gluconate, reduced ET-1-induced changes in Isc. Furthermore, the response was inhibited by the NaCl cotransport inhibitor, furosemide. In paired tissues, ET-1 significantly increased mucosal net 36Cl flux without significant effect on 22Na flux. The increase in Isc induced by ET was diminished by pretreatment with indomethacin. The second messengers mediating the increase in Isc were investigated in cultured canine tracheal epithelial cells. ET-1 stimulated the release of [3H]arachidonate from membrane phospholipids, increased intracellular Ca2+ (occasionally producing oscillations), and increased adenosine 3',5'-cyclic monophosphate accumulation. The latter was diminished by indomethacin. Thus ET is a potent agonist of Cl secretion (with the isopeptides having the following potency: ET-1 greater than or equal to ET-2 greater than ET-3) and acts, in part, through a cyclooxygenase-dependent mechanism.


2021 ◽  
Author(s):  
Yu-Huan Chen ◽  
Jenn-Yeu Shin ◽  
Hsiu-Mei Wei ◽  
Chi-Chen Lin ◽  
Linda Chia-Hui Yu ◽  
...  

A fungal immunomodulatory protein Ling Zhi-8 (LZ-8) isolated from Ganoderma lucidum (GL) regulates immune cells and inhibits tumor growth; however, the role of LZ-8 in intestinal epithelial cells (IECs) is...


1998 ◽  
Vol 275 (5) ◽  
pp. L917-L923 ◽  
Author(s):  
Luis J. V. Galietta ◽  
Luciana Musante ◽  
Leila Romio ◽  
Ubaldo Caruso ◽  
Annarita Fantasia ◽  
...  

We performed Ussing chamber experiments on cultured human bronchial epithelial cells to look for the presence of electrogenic dibasic amino acid transport. Apical but not basolaterall-arginine (10–1,000 μM) increased the short-circuit current. Maximal effect and EC50were ∼3.5 μA/cm2and 80 μM, respectively, in cells from normal subjects and cystic fibrosis patients. The involvement of nitric oxide was ruled out because a nitric oxide synthase inhibitor ( NG-nitro-l-arginine methyl ester) did not decrease the arginine-dependent current. Apicall-lysine,l-alanine, andl-proline, but not aspartic acid, were also effective in increasing the short-circuit current, with EC50values ranging from 26 to 971 μM. Experiments performed with radiolabeled arginine demonstrated the presence of an Na+-dependent concentrative transporter on the apical membrane of bronchial cells. This transporter could be important in vivo to maintain a low amino acid concentration in the fluid covering the airway surface.


Author(s):  
Saurabh Aggarwal ◽  
Ahmed Lazrak ◽  
Israr Ahmad ◽  
Zhihong Yu ◽  
Ayesha Bryant ◽  
...  

ABSTRACTWe previously reported that cell-free heme (CFH) is increased in the plasma of patients with acute and chronic lung injury and causes pulmonary edema in animal model of acute respiratory distress syndrome (ARDS) post inhalation of halogen gas. However, the mechanisms by which CFH causes pulmonary edema are unclear. Herein we report for the first time the presence of CFH and chlorinated lipids (formed by the interaction of halogen gas, Cl2, with plasmalogens) in the plasma of patients and mice exposed to Cl2 gas. Ex vivo incubation of red blood cells (RBC) with halogenated lipids caused oxidative damage to RBC cytoskeletal protein spectrin, resulting in hemolysis and release of CFH. A single intramuscular injection of the heme-scavenging protein hemopexin (4 µg/kg body weight) in mice, one hour post halogen exposure, reversed RBC fragility and decreased CFH levels to those of air controls. Patch clamp and short circuit current measurements revealed that CFH inhibited the activity of amiloride-sensitive (ENaC) and cation sodium (Na+) channels in mouse alveolar cells and trans-epithelial Na+ transport across human airway cells with EC50 of 125 nM and 500 nM, respectively. Molecular modeling identified 22 putative heme-docking sites on ENaC (energy of binding range: 86-1563 kJ/mol) with at least 2 sites within its narrow transmembrane pore, potentially capable of blocking Na+ transport across the channel. In conclusion, results suggested that CFH mediated inhibition of ENaC activity may be responsible for pulmonary edema post inhalation injury.


1999 ◽  
Vol 277 (2) ◽  
pp. C271-C279 ◽  
Author(s):  
J. Beltinger ◽  
B. C. McKaig ◽  
S. Makh ◽  
W. A. Stack ◽  
C. J. Hawkey ◽  
...  

The epithelium of the gastrointestinal tract transports ions and water but excludes luminal microorganisms and toxic molecules. The factors regulating these important functions are not fully understood. Intestinal myofibroblasts lie subjacent to the basement membrane, at the basal surface of epithelial cells. We recently showed that primary cultures of adult human colonic subepithelial myofibroblasts express cyclooxygenase (COX)-1 and COX-2 enzymes and release bioactive transforming growth factor-β (TGF-β). In this study we have investigated the role of normal human colonic subepithelial myofibroblasts in the regulation of transepithelial resistance and secretory response in HCA-7 and T84 colonic epithelial cell lines. Cocultures of epithelial cells-myofibroblasts and medium conditioned by myofibroblasts enhanced transepithelial resistance and delayed mannitol flux. A panspecific antibody to TGF-β (but not piroxicam) antagonized this effect. In HCA-7 cells, myofibroblasts downregulated secretagogue-induced change in short-circuit current, and this effect was reversed by pretreatment of myofibroblasts with piroxicam. In contrast to HCA-7 cells, myofibroblasts upregulated the agonist-induced secretory response in T84 cells. This study shows that intestinal subepithelial myofibroblasts enhance barrier function and modulate electrogenic chloride secretion in epithelial cells. The enhancement of barrier function was mediated by TGF-β. In contrast, the modulation of agonist-induced change in short-circuit current was mediated by cyclooxygenase products. These findings suggest that colonic myofibroblasts regulate important functions of epithelial cells via distinct secretory products.


1985 ◽  
Vol 248 (1) ◽  
pp. F43-F47 ◽  
Author(s):  
W. P. Wiesmann ◽  
J. P. Johnson ◽  
G. A. Miura ◽  
P. K. Chaing

The effect of aldosterone (Aldo) on phospholipid (PL) biosynthesis in cultured toad bladder epithelial cells was studied in cells incubated with [1,2-14C]choline and [methyl-3H]methionine over a 5-h period. Aldo (10(-7) M) did not alter the uptake of either precursor but significantly stimulated the incorporation of both labels into phosphatidylcholine (PC), the only PL labeled. 3H labeling of PC increased 29% and 14C incorporation into PC increased 34% in cells exposed to Aldo. A similar 30% increase in protein carboxymethylation occurred in cells treated with Aldo. 3-Deazaadenosine (DZA), a methylation inhibitor, abolished the Aldo-stimulated increase in PC labeling from [3H]methionine. PC labeling from [1,2-14C]choline was not affected by DZA. Basal and Aldo-stimulated protein carboxy-methylation were inhibited by DZA. DZA (300 microM) caused a mild decrease in basal short-circuit current (ISC) but completely inhibited the ISC response to 10(-7) M Aldo. Inhibition was complete when DZA was added up to 2 h following exposure to Aldo, and was reversible. Cells previously exposed to Aldo showed a significant increase in ISC within 2 h following removal of DZA. We conclude that Aldo stimulates PL methylation, protein carboxymethylation, and turnover of PC from choline. Inhibition of methylation reactions coincides with the inhibition of ISC response to Aldo.


1998 ◽  
Vol 274 (3) ◽  
pp. L378-L387 ◽  
Author(s):  
Jin Wen Ding ◽  
John Dickie ◽  
Hugh O’Brodovich ◽  
Yutaka Shintani ◽  
Bijan Rafii ◽  
...  

Distal lung epithelial cells (DLECs) play an active role in fluid clearance from the alveolus by virtue of their ability to actively transport Na+ from the alveolus to the interstitial space. The present study evaluated the ability of activated macrophages to modulate the bioelectric properties of DLECs. Low numbers of lipopolysaccharide (LPS)-treated macrophages were able to significantly reduce amiloride-sensitive short-circuit current ( I sc) without affecting total I sc or monolayer resistance. This was associated with a rise in the flufenamic acid-sensitive component of the I sc. The effect was reversed by the addition of N-monomethyl-l-arginine to the medium, implying a role for nitric oxide. We hypothesized that macrophages exerted their effect by expressing inducible nitric oxide synthase (iNOS) in DLECs. The products of LPS-treated macrophages increased the levels of iNOS protein and mRNA transcripts in DLECs as well as causing a rise in iNOS activity. Immunofluorescence microscopy of LPS-stimulated macrophage-DLEC cocultures with anti-nitrotyrosine antibodies provided evidence for the generation of peroxynitrite in macrophages but not in DLECs. These data indicate that activated macrophages in the lung may contribute to impaired resolution of acute respiratory distress syndrome and suggest a novel mechanism whereby nitric oxide might alter cell function by altering its ion-transporting phenotype.


2001 ◽  
Vol 281 (2) ◽  
pp. C633-C648 ◽  
Author(s):  
Sasha Blaug ◽  
Kevin Hybiske ◽  
Jonathan Cohn ◽  
Gary L. Firestone ◽  
Terry E. Machen ◽  
...  

Mammary epithelial 31EG4 cells (MEC) were grown as monolayers on filters to analyze the apical membrane mechanisms that help mediate ion and fluid transport across the epithelium. RT-PCR showed the presence of cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial Na+ channel (ENaC) message, and immunomicroscopy showed apical membrane staining for both proteins. CFTR was also localized to the apical membrane of native human mammary duct epithelium. In control conditions, mean values of transepithelial potential (apical-side negative) and resistance ( R T) are −5.9 mV and 829 Ω · cm2, respectively. The apical membrane potential ( V A) is −40.7 mV, and the mean ratio of apical to basolateral membrane resistance ( R A/ R B) is 2.8. Apical amiloride hyperpolarized V A by 19.7 mV and tripled R A/ R B. A cAMP-elevating cocktail depolarized V A by 17.6 mV, decreased R A/ R B by 60%, increased short-circuit current by 6 μA/cm2, decreased R T by 155 Ω · cm2, and largely eliminated responses to amiloride. Whole cell patch-clamp measurements demonstrated amiloride-inhibited Na+ currents [linear current-voltage ( I-V) relation] and forskolin-stimulated Cl−currents (linear I-V relation). A capacitance probe method showed that in the control state, MEC monolayers either absorbed or secreted fluid (2–4 μl · cm−2 · h−1). Fluid secretion was stimulated either by activating CFTR (cAMP) or blocking ENaC (amiloride). These data plus equivalent circuit analysis showed that 1) fluid absorption across MEC is mediated by Na+ transport via apical membrane ENaC, and fluid secretion is mediated, in part, by Cl− transport via apical CFTR; 2) in both cases, appropriate counterions move through tight junctions to maintain electroneutrality; and 3) interactions among CFTR, ENaC, and tight junctions allow MEC to either absorb or secrete fluid and, in situ, may help control luminal [Na+] and [Cl−].


Sign in / Sign up

Export Citation Format

Share Document