Potassium conductances in tracheal epithelium activated by secretion and cell swelling

1990 ◽  
Vol 258 (4) ◽  
pp. C630-C638 ◽  
Author(s):  
A. G. Butt ◽  
W. L. Clapp ◽  
R. A. Frizzell

Increased basolateral membrane K conductance accompanies stimulation of Cl secretion across canine trachea. To assess the K conductance properties, we permeabilized the apical membranes with amphotericin B and monitored the current and conductance caused by K flow across the basolateral membranes. Under basal unstimulated conditions, two K conductances could be distinguished by blockers. One was inhibited only by barium; the other was sensitive also to quinidine and lidocaine. The permeabilities of the basal conductance pathways to K and Rb were similar (PK/PRb approximately equal to 1.5). The secretory agonist, epinephrine, selectively increased the quinidine-insensitive conductance, implicating it in the Cl secretory response. Cell swelling induced a third conductance with a low permeability to Rb (PK/PRb approximately equal to 10) that was quinidine sensitive. In tissues not treated with amphotericin, neither quinidine nor Rb-for-K replacement inhibited transepithelial Cl secretion. Thus neither of the quinidine-sensitive K conductances (basal or swelling induced) contribute to the increase in basolateral K conductance during Cl secretion. Cell shrinkage inhibited all three conductances and secretion, suggesting that the initial priority of the cell is volume regulation.

2000 ◽  
Vol 279 (1) ◽  
pp. G40-G48 ◽  
Author(s):  
Thorsten Sonnentag ◽  
Wolf-Kristian Siegel ◽  
Oliver Bachmann ◽  
Heidi Rossmann ◽  
Andreas Mack ◽  
...  

Concomitant Na+/H+ and Cl−/HCO3 − exchange activation occurs during stimulation of acid secretion in cultured rabbit parietal cells, possibly related to a necessity for volume regulation during the secretory process. We investigated whether cytoplasmic volume changes occur during secretagogue stimulation of cultured rabbit parietal cells. Cells were loaded with the fluorescent dye calcein, and the calcein concentration within a defined cytoplasmic volume was recorded by confocal microscopy. Forskolin at 10−5 M, carbachol at 10−4 M, and hyperosmolarity (400 mosmol) resulted in a rapid increase in the cytoplasmic dye concentration by 21 ± 6, 9 ± 4, and 23 ± 5%, respectively, indicative of cell shrinkage, followed by recovery to baseline within several minutes, indicative of regulatory volume increase (RVI). Depolarization by 5 mM barium resulted in a decrease of the cytoplasmic dye concentration by 10 ± 2%, indicative of cell swelling, with recovery within 15 min, and completely prevented forskolin- or carbachol-induced cytoplasmic shrinkage. Na+/H+ exchange inhibitors slightly reduced the initial cell shrinkage and significantly slowed the RVI, whereas 100 μM bumetanide had no significant effect on either parameter. We conclude that acid secretagoguges induce a rapid loss of parietal cell cytoplasmic volume, followed by RVI, which is predominantly mediated by Na+/H+ and Cl−/HCO3 − exchange.


1993 ◽  
Vol 264 (3) ◽  
pp. F496-F501 ◽  
Author(s):  
J. S. Beck ◽  
A. M. Hurst ◽  
J. Y. Lapointe ◽  
R. Laprade

Potassium channel activity of the basolateral membrane of the collagenase-treated rabbit proximal convoluted tubule (PCT) was studied during continuous luminal microperfusion. In cell-attached patches (high-K pipette) an inwardly rectifying potassium channel was observed with an inward slope conductance of 60.8 +/- 3.3 pS (n = 12) and outward slope conductance of 17.1 +/- 2.7 pS (n = 6). Stimulation of transcellular sodium transport with luminal glucose and alanine increased channel activity [measured as single-channel open probability (NPo)] from 0.19 +/- 0.11 to 0.44 +/- 0.09 (n = 8). This increase in channel activity was not likely to be mediated by either cell depolarization or cell swelling, because channel activity was voltage insensitive over physiological potentials and because the channel was not activated by stretch. However, channel activity was pH sensitive; reducing luminal pH from 7.4 to 6.5 reduced NPo from 0.63 +/- 0.24 to 0.26 +/- 0.16 (n = 5). Our work demonstrates the feasibility of patch clamping the basolateral membrane of microperfused nephron segments. This has allowed us to follow the activity of this potassium channel during an increase in sodium transport and show that its activity does increase during this maneuver. We conclude that: 1) it is possible to patch clamp the basolateral membrane of microperfused nephron segments, and 2) basolateral membrane of the rabbit PCT contains an inwardly rectifying, pH-sensitive potassium channel. The behavior of this channel on stimulation of transcellular sodium transport could explain the macroscopic increase in basolateral potassium conductance observed under similar conditions.


1987 ◽  
Vol 89 (5) ◽  
pp. 687-702 ◽  
Author(s):  
C W Davis ◽  
A L Finn

The volume of individual cells in intact frog urinary bladders was determined by quantitative microscopy and changes in volume were used to monitor the movement of solute across the basolateral membrane. When exposed to a serosal hyposmotic solution, the cells swell as expected for an osmometer, but then regulate their volume back to near control in a process that involves the loss of KCl. We show here that volume regulation is abolished by Ba++, which suggests that KCl movements are mediated by conductive channels for both ions. Volume regulation is also inhibited by removing Ca++ from the serosal perfusate, which suggests that the channels are activated by this cation. Previously, amiloride was observed to inhibit volume regulation: in this study, amiloride-inhibited, hyposmotically swollen cells lost volume when the Ca++ ionophore A23187 was added to Ca++-replete media. We attempted to effect volume changes under isosmotic conditions by suddenly inhibiting Na+ entry across the apical membrane with amiloride, or Na+ exit across the basolateral membrane with ouabain. Neither of these Na+ transport inhibitors produced the expected results. Amiloride, instead of causing a decrease in cell volume, had no effect, and ouabain, instead of causing cell swelling, caused cell shrinkage. However, increasing cell Ca++ with A23187, in both the absence and presence of amiloride, caused cells to lose volume, and Ca++-free Ringer's solution (serosal perfusate only) caused ouabain-blocked cells to swell. Finally, again under isosmotic conditions, removal of Na+ from the serosal perfusate caused a loss of volume from cells exposed to amiloride. These results strongly suggest that intracellular Ca++ mediates cell volume regulation by exerting a negative control on apical membrane Na+ permeability and a positive control on basolateral membrane K+ permeability. They also are compatible with the existence of a basolateral Na+/Ca++ exchanger.


1995 ◽  
Vol 269 (4) ◽  
pp. C849-C855 ◽  
Author(s):  
I. Bize ◽  
P. B. Dunham

K-Cl cotransport is involved in volume regulation in a number of cell types. Cell swelling stimulates K-Cl cotransport, probably by inhibition of a volume-sensitive kinase. K-Cl cotransport can also be activated by oxidants and thiol reagents. We investigated the effect of H2O2 on K-Cl cotransport of LK sheep red blood cells in an attempt to identify the target of oxidants. H2O2 stimulated K-Cl cotransport. The stimulation was virtually abolished by subsequent incubation with calyculin, a protein phosphatase inhibitor. This suggests that H2O2 stimulates a calyculin-sensitive phosphatase and activates K-Cl cotransport by causing a decrease in phosphorylation of the transporter or a regulatory protein. The thiol reagent N-ethylmaleimide, which stimulates K-Cl cotransport, did not stimulate cotransport further in cells with cotransport activated by staurosporine but did stimulate cotransport further in cells with cotransport activated by H2O2. These results suggest that there are at least two distinct phosphorylation sites on the transporter or a regulator. The results also suggest that the phosphatase is associated with the membrane.


1988 ◽  
Vol 254 (5) ◽  
pp. C643-C650 ◽  
Author(s):  
C. W. Davis ◽  
A. L. Finn

In Necturus gallbladder epithelium, elevation of mucosal K+ to 95 mM in the presence of 10 mM Na+ resulted in cell swelling at a rate of 3.2% original volume per minute, followed by volume-regulatory shrinking. When Na+ was completely removed from or when amiloride (10(-4) M) was added to the mucosal medium, K+-induced cell swelling was abolished. In the presence of 10 mM Na+, 1 mM Ba2+ abolished and substitution of mucosal Cl- by NO-3 had no effect on K+-induced swelling. Thus solute entry following elevation of mucosal K+ is effected by separate K+ and Cl- pathways. Furthermore, substitution of 95 mM K+ for Na+ in the mucosal bathing medium leads to the development of a Cl- conductance in the basolateral membrane as long as some Na+ remains in the medium. However, cell swelling induced by mucosal dilution does not lead to the appearance of a Cl- conductance. Thus the activation of this conductance requires both swelling and membrane depolarization. These results show that 1) high mucosal K+ leads to cell swelling due to the entry of Cl- along with K+ and the Cl- can enter across either membrane, 2) the Cl- pathways require the presence of mucosal Na+, and 3) cell volume regulation is activated by an increase in volume per se, i.e., a hyposmotic exposure is not required for volume regulation to occur.


1992 ◽  
Vol 288 (2) ◽  
pp. 681-689 ◽  
Author(s):  
D Häussinger ◽  
C Hallbrucker ◽  
N Saha ◽  
F Lang ◽  
W Gerok

The interaction between cell volume and taurocholate excretion into bile was studied in isolated perfused rat liver. Cell swelling due to hypo-osmotic exposure, addition of amino acids or insulin stimulated taurocholate excretion into bile and bile flow, whereas hyperosmotic cell shrinkage inhibited these. These effects were explained by changes in Vmax of taurocholate excretion into bile: Vmax. increased from about 300 to 700 nmol/min per g after cell swelling by 12-15% caused by either hypo-osmotic exposure or addition of amino acids under normo-osmotic conditions. Steady-state taurocholate excretion into bile was not affected when the influent K+ concentration was increased from 6 to 46 mM or decreased to 1 mM with iso-osmoticity being maintained by corresponding changes in the influent Na+ concentration. Replacement of 40 mM-NaCl by 80 mM-sucrose decreased taurocholate excretion into bile by about 70%; subsequent hypo-osmotic exposure by omission of sucrose increased taurocholate excretion to 160%. Only minor, statistically insignificant, effects of aniso-osmotic cell volume changes on the appearance of bolus-injected horseradish peroxidase in bile were observed. Taurocholate (400 microM) exhibited a cholestatic effect during hyperosmotic cell shrinkage, but not during hypo-osmotic cell swelling. Both taurocholate and tauroursodeoxycholate increased liver cell volume. Tauroursodeoxycholate stimulated taurocholate (100 microM) excretion into bile. This stimulatory effect was strongly dependent on the extent of tauroursodeoxycholate-induced cell swelling. During continuous infusion of taurocholate (100 microM) further addition of tauroursodeoxycholate at concentrations of 20, 50 and 100 microM increased cell volume by 10, 8 and 2% respectively, in parallel with a stimulation of taurocholate excretion into bile by 29, 27 and 9% respectively. There was a close relationship between the extent of cell volume changes and taurocholate excretion into bile, regardless of whether cell volume was modified by tauroursodeoxycholate, amino acids or aniso-osmotic exposure. The data suggest that: (i) liver cell volume is one important factor determining bile flow and biliary taurocholate excretion; (ii) swelling-induced stimulation of taurocholate excretion into bile is probably not explained by alterations of the membrane potential; (iii) bile acids modulate liver cell volume; (iv) taurocholate-induced cholestasis may depend on cell volume; (v) stimulation of taurocholate excretion into bile by tauroursodeoxycholate can largely be explained by tauroursodeoxycholate-induced cell swelling.


1987 ◽  
Vol 253 (2) ◽  
pp. F290-F298
Author(s):  
L. W. Welling ◽  
D. J. Welling ◽  
T. J. Ochs

Isolated, lumen-collapsed, proximal and distally occluded segments of rabbit S1 and S2 proximal tubule were equilibrated in isotonic NaCl or isosmotic raffinose medium and then exposed acutely to hypotonic or hypertonic raffinose or NaCl solution. The result was a water flux per millimeter tubule length, JVo, across the basolateral cell membranes and a consequent cell swelling or shrinkage that could be measured by a video technique in the initial 0.1 s or less after a change from steady state. The cell volume change was proportional to the applied osmolality difference, delta pi, and differed consistently with the solute employed. From the equation JVo/delta pi = sigma LpA, where sigma is the basolateral membrane reflection coefficient for the osmotic solute used and LpA is the membrane hydraulic conductivity per millimeter tubule length, and from the assumption that sigma raffinose = 1, sigma NaCl was obtained by dividing the JVo/delta pi values from the NaCl studies by those from the raffinose studies. For both S1 and S2 segments, sigma NaCl was found to be approximately 0.5. A similar value was obtained from the rate of cell shrinkage immediately after isosmolar exchange of raffinose for NaCl medium.


1982 ◽  
Vol 79 (3) ◽  
pp. 481-505 ◽  
Author(s):  
B E Persson ◽  
K R Spring

The hydraulic water permeability (Lp) of the cell membranes of Necturus gallbladder epithelial cells was estimated from the rate of change of cell volume after a change in the osmolality of the bathing solution. Cell volume was calculated from computer reconstruction of light microscopic images of epithelial cells obtained by the "optical slice" technique. The tissue was mounted in a miniature Ussing chamber designed to achieve optimal optical properties, rapid bath exchange, and negligible unstirred layer thickness. The control solution contained only 80% of the normal NaCl concentration, the remainder of the osmolality was made up by mannitol, a condition that did not significantly decrease the fluid absorption rate in gallbladder sac preparations. The osmotic gradient ranged from 11.5 to 41 mosmol and was achieved by the addition or removal of mannitol from the perfusion solutions. The Lp of the apical membrane of the cell was 1.0 X 10(-3) cm/s . osmol (Posm = 0.055 cm/s) and that of the basolateral membrane was 2.2 X 10(-3) cm/s . osmol (Posm = 0.12 cm/s). These values were sufficiently high so that normal fluid absorption by Necturus gallbladder could be accomplished by a 2.4-mosmol solute gradient across the apical membrane and a 1.1-mosmol gradient across the basolateral membrane. After the initial cell shrinkage or swelling resulting from the anisotonic mucosal or serosal medium, cell volume returned rapidly toward the control value despite the fact that one bathing solution remained anisotonic. This volume regulatory response was not influenced by serosal ouabain or reduction of bath NaCl concentration to 10 mM. Complete removal of mucosal perfusate NaCl abolished volume regulation after cell shrinkage. Estimates were also made of the reflection coefficient for NaCl and urea at the apical cell membrane and of the velocity of water flow across the cytoplasm.


1990 ◽  
Vol 258 (4) ◽  
pp. F951-F962 ◽  
Author(s):  
P. A. Welling ◽  
R. G. O'Neil

The ionic basis of volume regulation was assessed in the nonperfused rabbit proximal tubule (S2 segment) by use of simultaneous measurements of tubule volume via video-optical imaging techniques and basolateral membrane voltage (Vbl) and relative ionic conductance via conventional microelectrodes. Both cell volume (9.9 +/- 0.70 nl/cm tubule length) and Vbl (-42.8 +/- 3.6 mV) remained stable in the control isotonic Ringer solution (290 mosmol/kg). When the osmolality of the bathing medium was reduced to 150 mosmol/kg, tubules swelled 72% above base line within 1 min and subsequently regulated over the course of the next 4-6 min to a steady state 20 +/- 3% above the initial base-line volume. Cell swelling was accompanied by a transient hyperpolarization of Vbl of -14.3 +/- 2.0 mV (HCO3-containing Ringer) and -10.0 +/- 0.7 mV (HCO3-free Ringer). Although the hyperpolarization was not inhibited by barium in the presence of bicarbonate buffer, addition of 2 mM Ba to a bicarbonate-free Ringer depolarized Vbl by +22 mV and abolished both the relative potassium conductance and the hyperpolarization accompanying cell swelling (delta Vbl = -4.6 +/- 0.6 mV). Furthermore, the relative conductance of K at the basolateral membrane increased from 0.16 in the isotonic control medium to 0.34 at the peak of cell swelling. Because the hyperpolarization of Vbl ensued after cells had swollen approximately 10% above base line, a modest threshold volume and time delay may be involved in triggering the volume-dependent activation of the K conductance. In parallel studies, the change in Vbl on a rapid step-change in bath Cl (49 to 4.9 mM) averaged 5.3 +/- 1.0 mV in the isotonic solution and increased to +11.3 +/- 2.1 (P less than or equal to 0.05) at the peak of cell swelling. This represented an increase in the relative Cl conductance of 0.08 to 0.20, which could only be attributed to an absolute increase in the basolateral membrane Cl conductance and not to a reduction in the other major basolateral membrane conductances. It is concluded that cell swelling results in an increase in both Cl and K conductance, which may underlie subsequent cell volume regulation.


2006 ◽  
Vol 291 (1) ◽  
pp. R1-R25 ◽  
Author(s):  
S. F. Pedersen ◽  
M. E. O'Donnell ◽  
S. E. Anderson ◽  
P. M. Cala

Maintenance of a stable cell volume and intracellular pH is critical for normal cell function. Arguably, two of the most important ion transporters involved in these processes are the Na+/H+exchanger isoform 1 (NHE1) and Na+-K+-2Cl−cotransporter isoform 1 (NKCC1). Both NHE1 and NKCC1 are stimulated by cell shrinkage and by numerous other stimuli, including a wide range of hormones and growth factors, and for NHE1, intracellular acidification. Both transporters can be important regulators of cell volume, yet their activity also, directly or indirectly, affects the intracellular concentrations of Na+, Ca2+, Cl−, K+, and H+. Conversely, when either transporter responds to a stimulus other than cell shrinkage and when the driving force is directed to promote Na+entry, one consequence may be cell swelling. Thus stimulation of NHE1 and/or NKCC1 by a deviation from homeostasis of a given parameter may regulate that parameter at the expense of compromising others, a coupling that may contribute to irreversible cell damage in a number of pathophysiological conditions. This review addresses the roles of NHE1 and NKCC1 in the cellular responses to physiological and pathophysiological stress. The aim is to provide a comprehensive overview of the mechanisms and consequences of stress-induced stimulation of these transporters with focus on the heart, brain, and blood. The physiological stressors reviewed are metabolic/exercise stress, osmotic stress, and mechanical stress, conditions in which NHE1 and NKCC1 play important physiological roles. With respect to pathophysiology, the focus is on ischemia and severe hypoxia where the roles of NHE1 and NKCC1 have been widely studied yet remain controversial and incompletely elucidated.


Sign in / Sign up

Export Citation Format

Share Document