Colonic H+-K+-ATPase in K+conservation and electrogenic Na+ absorption during Na+ restriction

2001 ◽  
Vol 281 (6) ◽  
pp. G1369-G1377 ◽  
Author(s):  
Zachary Spicer ◽  
Lane L. Clarke ◽  
Lara R. Gawenis ◽  
Gary E. Shull

Upregulation of the colonic H+-K+- ATPase (cHKA) during hyperaldosteronism suggests that it functions in both K+conservation and electrogenic Na+ absorption in the colon when Na+-conserving mechanisms are activated. To test this hypothesis, wild-type ( cHKA +/+) and cHKA-deficient ( cHKA −/−) mice were fed Na+-replete and Na+-restricted diets and their responses were analyzed. In both genotypes, Na+ restriction led to reduced plasma Na+ and increased serum aldosterone, and mRNAs for the epithelial Na+ channel (ENaC) β- and γ-subunits, channel-inducing factor, and cHKA were increased in distal colon. Relative to wild-type controls, cHKA −/− mice on a Na+-replete diet had elevated fecal K+ excretion. Dietary Na+restriction led to increased K+ excretion in knockout but not in wild-type mice. The amiloride-sensitive, ENaC-mediated short-circuit current in distal colon was significantly reduced in knockout mice maintained on either the Na+-replete or Na+-restricted diet. These results demonstrate that cHKA plays an important role in K+ conservation during dietary Na+ restriction and suggest that cHKA-mediated K+ recycling across the apical membrane is required for maximum electrogenic Na+ absorption.

1994 ◽  
Vol 266 (3) ◽  
pp. G475-G484 ◽  
Author(s):  
J. H. Sellin ◽  
W. P. Dubinsky

Rabbit cecum exhibits electrogenic Na absorption in vitro. However, because this transport process is not inhibited by amiloride nor does it demonstrate saturation kinetics typical of the amiloride-inhibitable Na channel, we considered whether the cecal transporter represented one of a recently described family of nonselective cation conductances or channels (NSCC). Both transepithelial and vesicle studies demonstrated that K, Cs, and Rb were transported via an apical conductance. Electrogenic transport was inhibited by divalent cations including Ca, Mg, and Ba but was unaffected by either lanthanum or gadolinium. Parallel studies in distal colon did not exhibit a similar response to either K substitution or Ba inhibition. Phenamil, verapamil, and nicardipine significantly inhibited the short-circuit current (Isc). stimulated by nominal Ca- and Mg-free conditions. Flux studies demonstrated a correlation between changes in Isc and Na transport. Microelectrode impalement studies suggested that there may be both NSCC and K conductance in the apical membrane. Planar bilayer studies identified a 190-pS cation channel that may correlate with the macroscopic transport properties of this epithelium. These studies are consistent with a model of cecal Na absorption mediated by a NSCC in the apical membrane; this may be the mechanism underlying the distinct epithelial transport characteristics of this intestinal segment.


2007 ◽  
Vol 293 (1) ◽  
pp. G335-G346 ◽  
Author(s):  
Jacob G. Kirkland ◽  
Graeme S. Cottrell ◽  
Nigel W. Bunnett ◽  
Carlos U. Corvera

Cholecystitis is one of the most common gastrointestinal diseases. Inflammation induces the activation of proteases that can signal to cells by cleaving protease-activated receptors (PARs) to induce hemostasis, inflammation, pain, and repair. However, the distribution of PARs in the gallbladder is unknown, and their effects on gallbladder function have not been fully investigated. We localized immunoreactive PAR1 and PAR2 to the epithelium, muscle, and serosa of mouse gallbladder. mRNA transcripts corresponding to PAR1 and PAR2, but not PAR4, were detected by RT-PCR and sequencing. Addition of thrombin and a PAR1-selective activating peptide (TFLLRN-NH2) to the serosal surface of mouse gallbladder mounted in an Ussing chamber stimulated an increase in short-circuit current in wild-type but not PAR1 knockout mice. Similarly, serosally applied trypsin and PAR2 activating peptide (SLIGRL-NH2) increased short-circuit current in wild-type but not PAR2 knockout mice. Proteases and activating peptides strongly inhibited electrogenic responses to subsequent stimulation with the same agonist, indicating homologous desensitization. Removal of HCO3− ions from the serosal buffer reduced responses to thrombin and trypsin by >80%. Agonists of PAR1 and PAR2 increase intracellular Ca2+ concentration in isolated and cultured gallbladder epithelial cells. The COX-2 inhibitor meloxicam and an inhibitor of CFTR prevented the stimulatory effect of PAR1 but not PAR2. Thus PAR1 and PAR2 are expressed in the epithelium of the mouse gallbladder, and serosally applied proteases cause a HCO3− secretion. The effects of PAR1 but not PAR2 depend on generation of prostaglandins and activation of CFTR. These mechanisms may markedly influence fluid and electrolyte secretion of the inflamed gallbladder when multiple proteases are generated.


2012 ◽  
Vol 303 (12) ◽  
pp. G1322-G1334 ◽  
Author(s):  
Jin Zhang ◽  
Susan T. Halm ◽  
Dan R. Halm

Secretagogues acting at a variety of receptor types activate electrogenic K+ secretion in guinea pig distal colon, often accompanied by Cl− secretion. Distinct blockers of KCa1.1 (BK, Kcnma1), iberiotoxin (IbTx), and paxilline inhibited the negative short-circuit current ( Isc) associated with K+ secretion. Mucosal addition of IbTx inhibited epinephrine-activated Isc (epi Isc) and transepithelial conductance (epi Gt) consistent with K+ secretion occurring via apical membrane KCa1.1. The concentration dependence of IbTx inhibition of epi Isc yielded an IC50 of 193 nM, with a maximal inhibition of 51%. Similarly, IbTx inhibited epi Gt with an IC50 of 220 nM and maximal inhibition of 48%. Mucosally added paxilline (10 μM) inhibited epi Isc and epi Gt by ∼50%. IbTx and paxilline also inhibited Isc activated by mucosal ATP, supporting apical KCa1.1 as a requirement for this K+ secretagogue. Responses to IbTx and paxilline indicated that a component of K+ secretion occurred during activation of Cl− secretion by prostaglandin-E2 and cholinergic stimulation. Analysis of KCa1.1α mRNA expression in distal colonic epithelial cells indicated the presence of the ZERO splice variant and three splice variants for the COOH terminus. The presence of the regulatory β-subunits KCaβ1 and KCaβ4 also was demonstrated. Immunolocalization supported the presence of KCa1.1α in apical and basolateral membranes of surface and crypt cells. Together these results support a cellular mechanism for electrogenic K+ secretion involving apical membrane KCa1.1 during activation by several secretagogue types, but the observed K+ secretion likely required the activity of additional K+ channel types in the apical membrane.


2000 ◽  
Vol 279 (2) ◽  
pp. C383-C392 ◽  
Author(s):  
Catharine A. Goddard ◽  
Martin J. Evans ◽  
William H. Colledge

The action of the isoflavone genistein on the cystic fibrosis transmembrane conductance regulator (CFTR) has been studied in many cell systems but not in intact murine tissues. We have investigated the action of genistein on murine tissues from normal and cystic fibrosis (CF) mice. Genistein increased the short-circuit current ( I sc) in tracheal (16.4 ± 2.8 μA/cm2) and colonic (40.0 ± 4.4 μA/cm2) epithelia of wild-type mice. This increase was inhibited by furosemide, diphenylamine-2-carboxylate, and glibenclamide, but not by DIDS. In contrast, genistein produced no significant change in the I sc of the tracheal epithelium (0.9 ± 1.1 μA/cm2) and decreased the I sc of colons from CF null (−13.1 ± 2.3 μA/cm2) and ΔF508 mice (−10.3 ± 1.3 μA/cm2). Delivery of a human CFTRcDNA-liposome complex to the airways of CF null mice restored the genistein response in the tracheas to wild-type levels. Tracheas from ΔF508 mice were also studied: 46% of trachea showed no response to genistein, whereas 54% gave an increase in I scsimilar to that in wild type. We conclude that genistein activates CFTR-mediated Cl− secretion in the murine trachea and distal colon.


1986 ◽  
Vol 251 (2) ◽  
pp. C252-C267 ◽  
Author(s):  
D. R. Halm ◽  
R. A. Frizzell

We measured isotopic unidirectional fluxes of K to elucidate the mechanisms of active K transport across the distal colon of the rabbit. Separate pathways for active K absorption and active K secretion were detected using various transport inhibitors and stimulators. The rate and direction of net K transport depend on the activities of these two pathways. K absorption was reduced by orthovanadate (both solutions) or serosal Ba, consistent with ATPase-dependent uptake of K across the apical membrane and exit via a Ba-sensitive basolateral K conductance. K secretion was inhibited by serosal ouabain or mucosal Ba, indicating that K secretion involves basolateral uptake via the Na-K pump and apical exit via a Ba-sensitive K conductance. Active K secretion appears to be electrogenic, since inhibition by ouabain produced equivalent changes in the net K flux and short-circuit current. Addition of bumetanide to the serosal solution or the removal of either Na or Cl from the serosal solution inhibited K secretion; mucosal solution amiloride was without effect. These results indicate that this K secretory process is independent of electrogenic Na absorption but is mechanistically similar to Cl secretory processes. Both epinephrine and prostaglandin E2 (PGE2) stimulate K secretion, but only PGE2 also stimulates Cl secretion. The response to these secretogogues suggests that the mechanisms underlying K and Cl secretion are closely linked but can be regulated independently.


2004 ◽  
Vol 164 (6) ◽  
pp. 911-921 ◽  
Author(s):  
Diana M. Toivola ◽  
Selvi Krishnan ◽  
Henry J. Binder ◽  
Satish K. Singh ◽  
M. Bishr Omary

The function of intestinal keratins is unknown, although keratin 8 (K8)–null mice develop colitis, hyperplasia, diarrhea, and mistarget jejunal apical markers. We quantified the diarrhea in K8-null stool and examined its physiologic basis. Isolated crypt-units from K8-null and wild-type mice have similar viability. K8-null distal colon has normal tight junction permeability and paracellular transport but shows decreased short circuit current and net Na absorption associated with net Cl secretion, blunted intracellular Cl/HCO3-dependent pH regulation, hyperproliferation and enlarged goblet cells, partial loss of the membrane-proximal markers H,K-ATPase-β and F-actin, increased and redistributed basolateral anion exchanger AE1/2 protein, and redistributed Na-transporter ENaC-γ. Diarrhea and protein mistargeting are observed 1–2 d after birth while hyperproliferation/inflammation occurs later. The AE1/2 changes and altered intracellular pH regulation likely account, at least in part, for the ion transport defects and hyperproliferation. Therefore, colonic keratins have a novel function in regulating electrolyte transport, likely by targeting ion transporters to their cellular compartments.


1981 ◽  
Vol 91 (1) ◽  
pp. 103-116
Author(s):  
MOIRA CIOFFI ◽  
WILLIAM R. HARVEY

1. Active potassium transport across the isolated midgut of the Tobacco Hornworm larva, Manduca sexta, was studied by measuring the short circuit current (ISC) and unidirectional 42-potassium fluxes. 2. The midgut is composed of structurally distinct anterior, middle and posterior regions, all of which are shown to transport potassium, so that by comparing and contrasting their structural and functional properties new information on the mechanism of midgut potassium transport was obtained. 3. It has previously been shown that the potassium pump is located on the apical membrane of the goblet cell. In the anterior and middle regions of the midgut the goblet cell has a large cavity and mitochondria are closely associated with the apical membrane while in the posterior midgut the goblet cavity is much smaller, and mitochondria are not associated with the apical membrane. However, the apical membrane particles which have been implicated in active potassium transport in a number of other insect epithelia are present in all three regions. This observation suggests that the particles are a structural requirement for active transport, and that close association between mitochondria and the transporting membrane is not essential. 4. Comparison of the kinetic influx pool size and the differences in the ISC decay profiles between the three midgut regions suggest that part of the influx pool is a transported pool located in the goblet cavity. 5. A new model to explain the driving force for potassium transport in the midgut is proposed, in which the rate of potassium transport controls the entrance of potassium into the cell, rather than the opposite, currently accepted view.


2000 ◽  
Vol 279 (2) ◽  
pp. C461-C479 ◽  
Author(s):  
Daniel C. Devor ◽  
Robert J. Bridges ◽  
Joseph M. Pilewski

Forskolin, UTP, 1-ethyl-2-benzimidazolinone (1-EBIO), NS004, 8-methoxypsoralen (Methoxsalen; 8-MOP), and genistein were evaluated for their effects on ion transport across primary cultures of human bronchial epithelium (HBE) expressing wild-type (wt HBE) and ΔF508 (ΔF-HBE) cystic fibrosis transmembrane conductance regulator. In wt HBE, the baseline short-circuit current ( I sc) averaged 27.0 ± 0.6 μA/cm2 ( n = 350). Amiloride reduced this I sc by 13.5 ± 0.5 μA/cm2 ( n = 317). In ΔF-HBE, baseline I sc was 33.8 ± 1.2 μA/cm2 ( n = 200), and amiloride reduced this by 29.6 ± 1.5 μA/cm2 ( n = 116), demonstrating the characteristic hyperabsorption of Na+ associated with cystic fibrosis (CF). In wt HBE, subsequent to amiloride, forskolin induced a sustained, bumetanide-sensitive I sc(Δ I sc = 8.4 ± 0.8 μA/cm2; n = 119). Addition of acetazolamide, 5-( N-ethyl- N-isopropyl)-amiloride, and serosal 4,4′-dinitrostilben-2,2′-disulfonic acid further reduced I sc, suggesting forskolin also stimulates HCO3 − secretion. This was confirmed by ion substitution studies. The forskolin-induced I scwas inhibited by 293B, Ba2+, clofilium, and quinine, whereas charybdotoxin was without effect. In ΔF-HBE the forskolin I sc response was reduced to 1.2 ± 0.3 μA/cm2 ( n = 30). In wt HBE, mucosal UTP induced a transient increase in I sc (Δ I sc = 15.5 ± 1.1 μA/cm2; n = 44) followed by a sustained plateau, whereas in ΔF-HBE the increase in I sc was reduced to 5.8 ± 0.7 μA/cm2 ( n = 13). In wt HBE, 1-EBIO, NS004, 8-MOP, and genistein increased I sc by 11.6 ± 0.9 ( n = 20), 10.8 ± 1.7 ( n = 18), 10.0 ± 1.6 ( n = 5), and 7.9 ± 0.8 μA/cm2( n = 17), respectively. In ΔF-HBE, 1-EBIO, NS004, and 8-MOP failed to stimulate Cl− secretion. However, addition of NS004 subsequent to forskolin induced a sustained Cl−secretory response (2.1 ± 0.3 μA/cm2, n = 21). In ΔF-HBE, genistein alone stimulated Cl− secretion (2.5 ± 0.5 μA/cm2, n = 11). After incubation of ΔF-HBE at 26°C for 24 h, the responses to 1-EBIO, NS004, and genistein were all potentiated. 1-EBIO and genistein increased Na+ absorption across ΔF-HBE, whereas NS004 and 8-MOP had no effect. Finally, Ca2+-, but not cAMP-mediated agonists, stimulated K+ secretion across both wt HBE and ΔF-HBE in a glibenclamide-dependent fashion. Our results demonstrate that pharmacological agents directed at both basolateral K+ and apical Cl− conductances directly modulate Cl−secretion across HBE, indicating they may be useful in ameliorating the ion transport defect associated with CF.


1998 ◽  
Vol 275 (5) ◽  
pp. L917-L923 ◽  
Author(s):  
Luis J. V. Galietta ◽  
Luciana Musante ◽  
Leila Romio ◽  
Ubaldo Caruso ◽  
Annarita Fantasia ◽  
...  

We performed Ussing chamber experiments on cultured human bronchial epithelial cells to look for the presence of electrogenic dibasic amino acid transport. Apical but not basolaterall-arginine (10–1,000 μM) increased the short-circuit current. Maximal effect and EC50were ∼3.5 μA/cm2and 80 μM, respectively, in cells from normal subjects and cystic fibrosis patients. The involvement of nitric oxide was ruled out because a nitric oxide synthase inhibitor ( NG-nitro-l-arginine methyl ester) did not decrease the arginine-dependent current. Apicall-lysine,l-alanine, andl-proline, but not aspartic acid, were also effective in increasing the short-circuit current, with EC50values ranging from 26 to 971 μM. Experiments performed with radiolabeled arginine demonstrated the presence of an Na+-dependent concentrative transporter on the apical membrane of bronchial cells. This transporter could be important in vivo to maintain a low amino acid concentration in the fluid covering the airway surface.


1988 ◽  
Vol 255 (6) ◽  
pp. C724-C730 ◽  
Author(s):  
T. C. Chu ◽  
O. A. Candia

Norepinephrine, 10(-6) M, reduced Cl- transport by 26% in 75% of isolated frog corneal epithelia. This inhibition was not previously reported. Since beta-adrenergic agonists are known to only stimulate Cl- transport, the action of specific alpha 1- and alpha 2-agonists on Cl- transport and electrical parameters was investigated. Phenylephrine, an alpha 1-agonist always stimulated the Cl(-)-dependent short-circuit current (Isc), but less than the beta-agonists. UK-14,304-18 (UK), a selective alpha 2-agonist, reduced both the Isc (by 31% at 10(-5) M) and the stroma-to-tear unidirectional Cl- flux. UK hyperpolarized the apical membrane potential difference and increased the transepithelial resistance and apical-to-basolateral resistance ratio. UK reduced forskolin-stimulated adenylate cyclase activity by 36%. The electrophysiological effects of UK are consistent with a reduction of the Cl- permeability at the apical membrane. Pretreatment with UK sensitized the tissue for a greater effect by forskolin. Results show that the frog corneal epithelium also possesses alpha 1- and alpha 2-receptors, the latter negatively coupled to the adenylate cyclase system. Cl- transport is thus regulated by an interaction between the positive effects of beta- and alpha 1-stimulation and the negative influence of alpha 2-stimulation.


Sign in / Sign up

Export Citation Format

Share Document