Effects of targeted deletion of A1 adenosine receptors on postischemic cardiac function and expression of adenosine receptor subtypes

2006 ◽  
Vol 291 (4) ◽  
pp. H1875-H1882 ◽  
Author(s):  
R. Ray Morrison ◽  
Bunyen Teng ◽  
Peter J. Oldenburg ◽  
Laxmansa C. Katwa ◽  
Jurgen B. Schnermann ◽  
...  

To examine ischemic tolerance in the absence of A1 adenosine receptors (A1ARs), isolated wild-type (WT) and A1AR knockout (A1KO) murine hearts underwent global ischemia-reperfusion, and injury was measured in terms of functional recovery and efflux of lactate dehydrogenase (LDH). Hearts were analyzed by real-time RT-PCR both at baseline and at intervals during ischemia-reperfusion to determine whether compensatory expression of other adenosine receptor subtypes occurs with either A1AR deletion and/or ischemia-reperfusion. A1KO hearts had higher baseline coronary flow (CF) and left ventricular developed pressure (LVDP) than WT hearts, whereas heart rate was unchanged by A1AR deletion. After 20 min of ischemia, CF was attenuated in A1KO compared with WT hearts, and this reduction persisted throughout reperfusion. Final recovery of LVDP was decreased in A1KO hearts (54.4 ± 5.1 vs. WT 81.1 ± 3.4% preischemic baseline) and correlated with higher diastolic pressure during reperfusion. Postischemic efflux of LDH was greater in A1KO compared with WT hearts. Real-time RT-PCR demonstrated the absence of A1AR transcript in A1KO hearts, and the message for A2A, A2B, and A3 adenosine receptors was similar in uninstrumented A1KO and WT hearts. Ischemia-reperfusion increased A2B mRNA expression 2.5-fold in both WT and A1KO hearts without changing A1 or A3 expression. In WT hearts, ischemia transiently doubled A2A mRNA, which returned to preischemic level upon reperfusion, a pattern not observed in A1KO hearts. Together, these data affirm the cardioprotective role of A1ARs and suggest that induced expression of other adenosine receptor subtypes may participate in the response to ischemia-reperfusion in isolated murine hearts.

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Xinglin Tan ◽  
Stephen L Tilley ◽  
Thomas Krahn ◽  
Bunyen Teng ◽  
S. J Mustafa ◽  
...  

Endogenous adenosine is an important ligand trigger for the cardioprotective effects of postconditioning (PostCon). To assess the hypothesis that A 2B adenosine receptor (A 2B AR) activation contributes to PostCon-induced protection, global ischemia-reperfusion was performed with and without PostCon or the selective A 2B agonist, BAY 60 – 6583 (BAY), in isolated wild-type (WT) and A 2B AR knockout (A 2B KO) mouse hearts. In WT hearts, PostCon improved post-ischemic recovery of left ventricular developed pressure (LVDP) to 63.3±1.6 % of pre-ischemic baseline vs. 49.9±1.6 % in non-PostCon controls (CTL), lowered end diastolic pressure (EDP) to 15.8±1.5 mmHg vs. 27.9±1.6 mmHg in CTL, and reduced coronary efflux of cardiac troponin I (cTnI) to 2507±359 ng/g heart weight vs. 4693±343 ng/g in CTL (n=12 both groups, p <0.05 each comparison). Treatment with BAY in the first two min of reperfusion mimicked beneficial effects of PostCon in WT hearts (LVDP: 64.7±2.0 % baseline, EDP: 16.2±2.0 mmHg, cTnI: 3311±366; n=13, not significant compared to respective PostCon values). Real-time PCR confirmed absence of A 2B AR in A 2B KO hearts and demonstrated no changes in expression of other adenosine receptor subtypes compared with WT hearts. In A 2B KO hearts, neither PostCon nor BAY improved recovery of LVDP (50.8±1.6 % baseline for CTL vs. 54.5±1.7 % with PostCon vs. 53.0±1.4 with BAY; n=6 each group), and neither affected EDP or release of cTnI. During reperfusion, both PostCon and BAY increased survival kinase signaling through Akt and ERK1/2 phosphorylation in WT but not A 2B KO hearts. In non-ischemic WT hearts, Akt and ERK1/2 phosphorylation was increased by both BAY treatment and application of the PostCon stimulus. These data demonstrate that the protective effects of PostCon are attenuated by targeted deletion of A 2B AR and are mimicked by selective A 2B AR activation, suggesting A 2B AR activation is an important trigger leading to PostCon-induced myocardial protection.


2000 ◽  
Vol 279 (4) ◽  
pp. H1690-H1697 ◽  
Author(s):  
John P. Headrick ◽  
Naomi S. Gauthier ◽  
Ray Morrison ◽  
G. Paul Matherne

We studied the role of mitochondrial ATP-sensitive K+(KATP) channels in modifying functional responses to 20 min global ischemia and 30 min reperfusion in wild-type mouse hearts and in hearts with ∼250-fold overexpression of functionally coupled A1-adenosine receptors (A1ARs). In wild-type hearts, time to onset of contracture (TOC) was 303 ± 24 s, with a peak contracture of 89 ± 5 mmHg. Diastolic pressure remained elevated at 52 ± 6 mmHg after reperfusion, and developed pressure recovered to 40 ± 6% of preischemia. A1AR overexpression markedly prolonged TOC to 517 ± 84 s, reduced contracture to 64 ± 6 mmHg, and improved recovery of diastolic (to 9 ± 4 mmHg) and developed pressure (to 82 ± 8%). 5-Hydroxydecanoate (5-HD; 100 μM), a mitochondrial KATPblocker, did not alter ischemic contracture in wild-type hearts, but increased diastolic pressure to 69 ± 8 mmHg and reduced developed pressure to 10 ± 5% during reperfusion. In transgenic hearts, 5-HD reduced TOC to 348 ± 18 s, increased postischemic contracture to 53 ± 4 mmHg, and reduced recovery of developed pressure to 22 ± 4%. In summary, these data are the first to demonstrate that endogenous activation of KATP channels improves tolerance to ischemia-reperfusion in murine myocardium. This functional protection occurs without modification of ischemic contracture. The data also support a role for mitochondrial KATP channel activation in the pronounced cardioprotection afforded by overexpression of myocardial A1ARs.


2007 ◽  
Vol 292 (4) ◽  
pp. H1986-H1994 ◽  
Author(s):  
Zhanna Makazan ◽  
Harjot K. Saini ◽  
Naranjan S. Dhalla

To study the mechanisms of mitochondrial dysfunction due to ischemia-reperfusion (I/R) injury, rat hearts were subjected to 20 or 30 min of global ischemia followed by 30 min of reperfusion. After recording both left ventricular developed pressure (LVDP) and end-diastolic pressure (LVEDP) to monitor the status of cardiac performance, mitochondria from these hearts were isolated to determine respiratory and oxidative phosphorylation activities. Although hearts subjected to 20 min of ischemia failed to generate LVDP and showed a marked increase in LVEDP, no changes in mitochondrial respiration and phosphorylation were observed. Reperfusion of 20-min ischemic hearts depressed mitochondrial function significantly but recovered LVDP completely and lowered the elevated LVEDP. On the other hand, depressed LVDP and elevated LVEDP in 30-min ischemic hearts were associated with depressions in both mitochondrial respiration and oxidative phosphorylation. Reperfusion of 30-min ischemic hearts elevated LVEDP, attenuated LVDP, and decreased mitochondrial state 3 and uncoupled respiration, respiratory control index, ADP-to-O ratio, as well as oxidative phosphorylation rate. Alterations of cardiac performance and mitochondrial function in I/R hearts were attenuated or prevented by pretreatment with oxyradical scavenging mixture (superoxide dismutase and catalase) or antioxidants [ N-acetyl-l-cysteine or N-(2-mercaptopropionyl)-glycine]. Furthermore, alterations in cardiac performance and mitochondrial function due to I/R were simulated by an oxyradical-generating system (xanthine plus xanthine oxidase) and an oxidant (H2O2) either upon perfusing the heart or upon incubation with mitochondria. These results support the view that oxidative stress plays an important role in inducing changes in cardiac performance and mitochondrial function due to I/R.


2007 ◽  
Vol 293 (4) ◽  
pp. H2523-H2529 ◽  
Author(s):  
R. Ray Morrison ◽  
Xing Lin Tan ◽  
Catherine Ledent ◽  
S. Jamal Mustafa ◽  
Polly A. Hofmann

Endogenous adenosine is an important ligand trigger for the cardioprotective effects of postconditioning (POC), yet it is unclear which adenosine receptor subtype is primarily responsible. To evaluate the role of A2A adenosine receptors in POC-induced protection, global ischemia-reperfusion was performed with and without POC in isolated wild-type (WT) and A2A adenosine receptor knockout (A2AKO) mouse hearts. Injury was measured in terms of postischemic functional recovery and release of cardiac troponin I (cTnI). Activation of protective signaling with POC was assessed by Akt and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. In WT hearts, POC improved recovery of postischemic developed pressure in early (81.6 ± 6.4% of preischemic baseline vs. 37.5 ± 5.6% for non-POC WT at 1 min) and late (62.2 ± 4.2% of baseline vs. 45.5 ± 5.3% for non-POC WT at 30 min) reperfusion, reduced cTnI release by 37%, and doubled the phosphorylation of both Akt and ERK1/2. These beneficial effects of POC were blocked by treatment with the selective A2A adenosine receptor antagonist ZM-241385 during reperfusion. Postischemic functional recovery, cTnI release, and phosphorylation of Akt and ERK1/2 were not different between non-POC WT and A2AKO hearts. In A2AKO hearts, POC did not improve functional recovery, reduce cTnI release, nor increase phosphorylation of Akt or ERK1/2. Thus the protective effects of POC are attenuated by both selective A2A receptor antagonism and targeted deletion of the gene encoding A2A adenosine receptors. These observations support the conclusion that endogenous activation of A2A adenosine receptors is an essential trigger leading to the protective effects of POC in isolated murine hearts.


2001 ◽  
Vol 79 (9) ◽  
pp. 761-767 ◽  
Author(s):  
Rana M Temsah ◽  
Hideo Kumamoto ◽  
Nobuakira Takeda ◽  
Naranjan S Dhalla

Although the involvement of serotonin in exacerbating vascular abnormalities in ischemic heart disease has been established, its role in mediating changes in cardiac function due to ischemia reperfusion (IR) is poorly understood. The aim of this study was to investigate the effect of a serotonin blocker, sarpogrelate (5-HT2A antagonist), in preventing cardiac injury due to IR. Isolated rat hearts were subjected to 30 min of global ischemia followed by 1 h of reperfusion. Sarpogrelate (50 nM-0.9 µM) was infused 10 min before ischemia as well as during the reperfusion period. The IR-induced changes in left ventricular developed pressure, left ventricular end diastolic pressure, rate of pressure development, and rate of pressure decay were attenuated (P < 0.05) with sarpogrelate treatment. Sarpogrelate also decreased the ultrastructural damage and improved the high energy phosphate level in the IR hearts (P < 0.05). This study provides evidence for the attenuation of IR-induced cardiac injury by 5-HT2A receptor blockade and supports the view that serotonin may contribute to the deleterious effects of IR in the heart.Key words: ischemia reperfusion, sarpogrelate, serotonin receptor blockade.


2009 ◽  
Vol 297 (6) ◽  
pp. R1681-R1690 ◽  
Author(s):  
Beihua Zhong ◽  
Donna H. Wang

Activation of the protease-activated receptor 2 (PAR2) or the transient receptor potential vanilloid type 1 (TRPV1) channels expressed in cardiac sensory afferents containing calcitonin gene-related peptide (CGRP) and/or substance P (SP) has been proposed to play a protective role in myocardial ischemia-reperfusion (I/R) injury. However, the interaction between PAR2 and TRPV1 is largely unknown. Using gene-targeted TRPV1-null mutant (TRPV1−/−) or wild-type (WT) mice, we test the hypothesis that TRPV1 contributes to PAR2-mediated cardiac protection via increasing the release of CGRP and SP. Immunofluorescence labeling showed that TRPV1 coexpressed with PAR2, PKC-ε, or PKAc in cardiomyocytes, cardiac blood vessels, and perivascular nerves in WT but not TRPV1−/− hearts. WT or TRPV1−/− hearts were Langendorff perfused with the selective PAR2 agonist, SLIGRL, in the presence or absence of various antagonists, followed by 35 min of global ischemia and 40 min of reperfusion (I/R). The recovery rate of coronary flow, the maximum rate of left ventricular pressure development, left ventricular end-diastolic pressure, and left ventricular developed pressure were evaluated after I/R. SLIGRL improved the recovery of hemodynamic parameters, decreased lactate dehydrogenase release, and reduced the infarct size in both WT and TRPV1−/− hearts ( P < 0.05). The protection of SLIGRL was significantly surpassed for WT compared with TRPV1−/− hearts ( P < 0.05). CGRP8–37, a selective CGRP receptor antagonist, RP67580, a selective neurokinin-1 receptor antagonist, PKC-ε V1–2, a selective PKC-ε inhibitor, or H-89, a selective PKA inhibitor, abolished SLIGRL protection by inhibiting the recovery of the rate of coronary flow, maximum rate of left ventricular pressure development, and left ventricular developed pressure, and increasing left ventricular end-diastolic pressure in WT but not TRPV1−/− hearts. Radioimmunoassay showed that SLIGRL increased the release of CGRP and SP in WT but not TRPV1−/− hearts ( P < 0.05), which were prevented by PKC-ε V1–2 and H-89. Thus our data show that PAR2 activation improves cardiac recovery after I/R injury in WT and TRPV1−/− hearts, with a greater effect in the former, suggesting that PAR2-mediated protection is TRPV1 dependent and independent, and that dysfunctional TRPV1 impairs PAR2 action. PAR2 activation of the PKC-ε or PKA pathway stimulates or sensitizes TRPV1 in WT hearts, leading to the release of CGRP and SP that contribute, at least in part, to PAR2-induced cardiac protection against I/R injury.


2002 ◽  
Vol 283 (1) ◽  
pp. F41-F51 ◽  
Author(s):  
Edwin K. Jackson ◽  
Chongxue Zhu ◽  
Stevan P. Tofovic

The purpose of this study was to systematically investigate the abundance of each of the adenosine receptor subtypes in the preglomerular microcirculation vs. other vascular segments and vs. the renal cortex and medulla. Rat preglomerular microvessels (PGMVs) were isolated by iron oxide loading followed by magnetic separation. For comparison, mesenteric microvessels, segments of the aorta (thoracic, middle abdominal, and lower abdominal), renal cortex, and renal medulla were obtained by dissection. Adenosine receptor protein and mRNA expression were examined by Western blotting, Northern blotting, and RT-PCR. Our results indicate that compared with other vascular segments and renal tissues, A1 and A2B receptor protein and mRNA are abundantly expressed in the preglomerular microcirculation, whereas A2A and A3 receptor protein and mRNA are barely detectable or undetectable in PGMVs. We conclude that, relative to other vascular and renal tissues, A1 and A2Breceptors are well expressed in PGMVs, whereas A2A and A3 receptors are notably deficient. Thus A1 and A2B receptors, but not A2A or A3receptors, may importantly regulate the preglomerular microcirculation.


2011 ◽  
Vol 301 (3) ◽  
pp. H1183-H1189 ◽  
Author(s):  
Enbo Zhan ◽  
Victoria J. McIntosh ◽  
Robert D. Lasley

All four adenosine receptor subtypes have been shown to play a role in cardioprotection, and there is evidence that all four subtypes may be expressed in cardiomyocytes. There is also increasing evidence that optimal adenosine cardioprotection requires the activation of more than one receptor subtype. The purpose of this study was to determine whether adenosine A2A and/or A2B receptors modulate adenosine A1 receptor-mediated cardioprotection. Isolated perfused hearts of wild-type (WT), A2A knockout (KO), and A2BKO mice, perfused at constant pressure and constant heart rate, underwent 30 min of global ischemia and 60 min of reperfusion. The adenosine A1 receptor agonist N6-cyclohexyladenosine (CHA; 200 nM) was administrated 10 min before ischemia and for the first 10 min of reperfusion. Treatment with CHA significantly improved postischemic left ventricular developed pressure (74 ± 4% vs. 44 ± 4% of preischemic left ventricular developed pressure at 60 min of reperfusion) and reduced infarct size (30 ± 2% with CHA vs. 52 ± 5% in control) in WT hearts, effects that were blocked by the A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (100 nM). Treatments with the A2A receptor agonist CGS-21680 (200 nM) and the A2B agonist BAY 60-6583 (200 nM) did not exert any beneficial effects. Deletion of adenosine A2A or A2B receptor subtypes did not alter ischemia-reperfusion injury, but CHA failed to exert a cardioprotective effect in hearts of mice from either KO group. These findings indicate that both adenosine A2A and A2B receptors are required for adenosine A1 receptor-mediated cardioprotection, implicating a role for interactions among receptor subtypes.


2021 ◽  
pp. 096032712110416
Author(s):  
Jie Wang ◽  
Xiaohuan Wang ◽  
Weiping Wan ◽  
Yuanying Guo ◽  
Yanfang Cui ◽  
...  

Objective Shenfu injection (SFI) has been reported to have a protection against myocardial ischemia-reperfusion (MI/R) injury. However, the changes of adenosine receptors in MI/R postconditioning when pretreated with SFI are unclear. Methods Forty-five rats were randomly divided into sham group (sham), MI/R postconditioning group (MI/R-post), low-dose SFI group (1 mL/kg), middle-dose SFI group (2.5 mL/kg), and high-dose SFI group (5 mL/kg). In SFI groups, SFI was intravenously injected before reperfusion, and rats were treated with ischemic postconditioning after ischemia for 30 min. After 24 h of reperfusion, the levels of Ca2+ and cAMP in blood platelets were analyzed. Myocardial infarct volume and myocardial pathology were observed. The levels of adenosine receptor subtypes A1, A2b, and A3 in myocardium were analyzed using immunohistochemistry and Western blot. The oxidative stress–related indicators were also observed. Results Compared with the MI/R-post group, SFI ameliorated the MI/R injury by decreasing the myocardial infarct area, oxidative stress, and concentration of Ca2+ and cAMP ( p < 0.01). Pretreatment with SFI enhanced the expression of adenosine receptors A1 and A2b in a dose manner compared with the MI/R-post group. In contrast, the levels of adenosine receptor A3 were increased after MI/R postconditioning compared with the sham group, and its expression continued to increase with the increase of SFI. Furthermore, the oxidative stress reduced with the concentrations of SFI. Conclusion These results demonstrated that pretreatment with SFI might regulate the expression of adenosine receptors to improve the MI/R postconditioning.


2005 ◽  
Vol 83 (6) ◽  
pp. 493-498 ◽  
Author(s):  
Marguerite Crawford ◽  
Sara Ford ◽  
Michele Henry ◽  
G Paul Matherne ◽  
Amy Lankford

Cold ischemic storage of hearts for transplantation is limited to 4–6 h, and therefore the development of strategies to extend preservation time may increase the donor pool of hearts. Overexpression of A1-adenosine receptors (A1AR) can protect hearts from acute ischemic injury, and the purpose of this study was to test the hypothesis that overexpression of A1AR will improve tolerance to longer periods of cold ischemic preservation. Hearts from 18 wild type and 16 transgenic mice with overexpression of A1AR (A1AR Trans) were isolated and perfused, and then subjected to 18 h of preservation in 5 °C University of Wisconsin solution followed by 2 h of reperfusion. Left ventricular end diastolic pressure and left ventricular developed pressure were measured as indices of ventricular function. Cell viability was assessed by determination of infarct size and myocardial cell apoptosis. A1AR Trans hearts showed improved function following 18 h of ischemia, as shown by lower end diastolic pressure (p < 0.05) and higher recovery of left ventricular developed pressure (p < 0.05) during reperfusion. A1AR Trans hearts had markedly reduced infarct size (p < 0.05) and decreased apoptosis (p < 0.05). Overexpression of cardiac A1AR imparts cardioprotection during long-term cold ischemic preservation. Key words: cardiac preservation, myocardial protection, g-protein coupled receptors, transgenic mice, heart transplantation.


Sign in / Sign up

Export Citation Format

Share Document