Hypovolemia and MSNA discharge patterns: assessing and interpreting sympathetic responses

2003 ◽  
Vol 284 (4) ◽  
pp. H1198-H1204 ◽  
Author(s):  
D. S. Kimmerly ◽  
J. K. Shoemaker

We previously demonstrated that diuretic-induced hypovolemia resulted in an enhanced baroreflex-mediated increase in integrated muscle sympathetic nerve activity (MSNA) and vasomotor tone during lower body negative pressure (LBNP) ( Am J Physiol Heart Circ Physiol 282: H645–H655, 2002). The purpose of this study was to perform a retrospective analysis of these data and examine the ability of relative MSNA burst amplitude distributions to highlight differences in baseline sympathetic nerve discharge patterns. An additional purpose was to determine whether differential responses in MSNA burst frequency and burst amplitude affect conclusions regarding sympathetic reflex control. MSNA, stroke volume (SV, Doppler), and estimated central venous pressure (CVP, dependent arm technique) were measured during LBNP within the placebo (Normo) and diuretic (Hypo; 100 mg/day spironolactone for 3 days) conditions ( n = 8). Compared with Normo, MSNA burst frequency at rest was elevated, and there was a rightward shift in the median of the relative burst amplitude distribution ( P < 0.05) in Hypo. During LBNP, the larger rise in total MSNA during Hypo versus Normo was due to greater increases in relative burst amplitude with no difference in the burst frequency response. The MSNA burst frequency response to LBNP was shifted to a higher position on the same MSNA-CVP curve during Hypo compared with Normo. In contrast, the Hypo burst amplitude response was shifted to a new curve with a slope that was similar to the Normo relationship. These data support the use of probability distribution analysis to examine intraindividual differences in baseline and reflex-mediated increases in MSNA burst amplitude. Furthermore, the differential effect of hypovolemia on the responses of burst frequency and amplitude during graded LBNP suggests that burst frequency data alone may not adequately represent reflex control of sympathetic outflow.

2001 ◽  
Vol 281 (2) ◽  
pp. R468-R475 ◽  
Author(s):  
John S. Floras ◽  
Gary C. Butler ◽  
Shin-Ichi Ando ◽  
Steven C. Brooks ◽  
Michael J. Pollard ◽  
...  

Lower body negative pressure (LBNP; −5 and −15 mmHg) was applied to 14 men (mean age 44 yr) to test the hypothesis that reductions in preload without effect on stroke volume or blood pressure increase selectively muscle sympathetic nerve activity (MSNA), but not the ratio of low- to high-frequency harmonic component of spectral power (PL/PH), a coarse-graining power spectral estimate of sympathetic heart rate (HR) modulation. LBNP at −5 mmHg lowered central venous pressure and had no effect on stroke volume (Doppler) or systolic blood pressure but reduced vagal HR modulation. This latter finding, a manifestation of arterial baroreceptor unloading, refutes the concept that low levels of LBNP interrogate, selectively, cardiopulmonary reflexes. MSNA increased, whereas PL/PH and HR were unchanged. This discordance is consistent with selectivity of efferent sympathetic responses to nonhypotensive LBNP and with unloading of tonically active sympathoexcitatory atrial reflexes in some subjects. Hypotensive LBNP (−15 mmHg) increased MSNA and PL/PH, but there was no correlation between these changes within subjects. Therefore, HR variability has limited utility as an estimate of the magnitude of orthostatic changes in sympathetic discharge to muscle.


2019 ◽  
Vol 127 (2) ◽  
pp. 464-472
Author(s):  
Connor J. Doherty ◽  
Trevor J. King ◽  
Anthony V. Incognito ◽  
Jordan B. Lee ◽  
Andrew D. Shepherd ◽  
...  

The influence of muscle sympathetic nerve activity (MSNA) responses on local vascular conductance during exercise are not well established. Variations in exercise mode and active muscle mass can produce divergent MSNA responses. Therefore, we sought to examine the effects of small- versus large-muscle mass dynamic exercise on vascular conductance and MSNA responses in the inactive limb. Thirty-five participants completed two study visits in a randomized order. During visit 1, superficial femoral artery (SFA) blood flow (Doppler ultrasound) was assessed at rest and during steady-state rhythmic handgrip (RHG; 1:1 duty cycle, 40% maximal voluntary contraction), one-leg cycling (17 ± 3% peak power output), and concurrent exercise at the same intensities. During visit 2, MSNA (contralateral fibular nerve microneurography) was acquired successfully in 12/35 participants during the same exercise modes. SFA blood flow increased during RHG ( P < 0.0001) and concurrent exercise ( P = 0.03) but not cycling ( P = 0.91). SFA vascular conductance was unchanged during RHG ( P = 0.88) but reduced similarly during concurrent and cycling exercise (both P < 0.003). RHG increased MSNA burst frequency ( P = 0.04) without altering burst amplitude ( P = 0.69) or total MSNA ( P = 0.26). In contrast, cycling and concurrent exercise had no effects on MSNA burst frequency (both P ≥ 0.10) but increased burst amplitude (both P ≤ 0.001) and total MSNA (both P ≤ 0.007). Across all exercise modes, the changes in MSNA burst amplitude and SFA vascular conductance were correlated negatively ( r = −0.43, P = 0.02). In summary, the functional vascular consequences of alterations in sympathetic outflow to skeletal muscle are most closely associated with changes in MSNA burst amplitude, but not frequency, during low-intensity dynamic exercise. NEW & NOTEWORTHY Low-intensity small- versus large-muscle mass exercise can elicit divergent effects on muscle sympathetic nerve activity (MSNA). We examined the relationships between changes in MSNA (burst frequency and amplitude) and superficial femoral artery (SFA) vascular conductance during rhythmic handgrip, one-leg cycling, and concurrent exercise in the inactive leg. Only changes in MSNA burst amplitude were inversely associated with SFA vascular conductance responses. This result highlights the functional importance of measuring MSNA burst amplitude during exercise.


1987 ◽  
Vol 63 (6) ◽  
pp. 2558-2562 ◽  
Author(s):  
R. G. Victor ◽  
W. N. Leimbach

Recent studies indicate that nonhypotensive orthostatic stress in humans causes reflex vasoconstriction in the forearm but not in the calf. We used microelectrode recordings of muscle sympathetic nerve activity (MSNA) from the peroneal nerve in conscious humans to determine if unloading of cardiac baroreceptors during nonhypotensive lower body negative pressure (LBNP) increases sympathetic discharge to the leg muscles. LBNP from -5 to -15 mmHg had no effect on arterial pressure or heart rate but caused graded decreases in central venous pressure and corresponding large increases in peroneal MSNA. Total MSNA (burst frequency X mean burst amplitude) increased by 61 +/- 22% (P less than 0.05 vs. control) during LBNP at only -5 mmHg and rose progressively to a value that was 149 +/- 29% greater than control during LBNP at -15 mmHg (P less than 0.05). The major new conclusion is that nonhypotensive LBNP is a potent stimulus to muscle sympathetic outflow in the leg as well as the arm. During orthostatic stress in humans, the cardiac baroreflex appears to trigger a mass sympathetic discharge to the skeletal muscles in all of the extremities.


2001 ◽  
Vol 100 (3) ◽  
pp. 303-309 ◽  
Author(s):  
Duminda N. WIJEYSUNDERA ◽  
Gary C. BUTLER ◽  
Shin-ichi ANDO ◽  
Michael J. POLLARD ◽  
Peter PICTON ◽  
...  

Mechanisms responsible for presyncope during lower body negative pressure (LBNP) in otherwise healthy subjects are poorly understood. Muscle sympathetic nerve activity (MSNA), blood pressure, heart rate (HR), HR power spectra, central venous pressure (CVP) and stroke volume were determined in 14 healthy men subjected to incremental LBNP. Of these, seven experienced presyncope at LBNP >-15 mmHg. Subjects who tolerated LBNP >-15 mmHg had significantly lower CVP (2.6±1.0 versus 7.2±1.2 mmHg; means±S.E.M., P < 0.02), HR (59±2 versus 66±3 beats/min, P < 0.05) and MSNA burst frequency (29.0±2.4 versus 39.0±3.5 bursts/min, P < 0.05) during supine rest. LBNP at -15 mmHg had no effect on blood pressure, but caused similar and significant reductions in stroke volume and cardiac output in both groups. Subjects who tolerated LBNP had significant reflex increases in HR, MSNA burst frequency and burst amplitude with LBNP of -15 mmHg. These responses were absent in those who experienced presyncope. The gain of the cardiac baroreflex regulation of MSNA was markedly attenuated in pre-syncopal subjects (1.2±0.6 versus 8.8±1.4 bursts/100 heart beats per mmHg; P < 0.001). Healthy subjects who experience presyncope in response to LBNP appear more dependent, when supine, upon MSNA to maintain preload, and less able to increase sympathetic vasoconstrictor discharge to skeletal muscle reflexively in response to orthostatic stimuli.


1993 ◽  
Vol 75 (2) ◽  
pp. 663-667 ◽  
Author(s):  
M. Saito ◽  
A. Tsukanaka ◽  
D. Yanagihara ◽  
T. Mano

The aim of this study was to clarify the relationship between sympathetic outflow to skeletal muscle and oxygen uptake during dynamic exercise. Muscle sympathetic nerve activity (MSNA) was recorded from the right median nerve microneurographically in eight healthy volunteers during leg cycling at four different intensities in a seated position for a 16-min bout. Work loads selected were 20, 40, 60, and 75% of maximal oxygen uptake (VO2max). Heart rate and blood pressure were measured during each exercise test. MSNA burst frequency was suppressed by 28% during cycling at 20% VO2max (23 vs. 33 bursts/min for control). Thereafter, it increased in a linear fashion with increasing work rate, with a significantly higher burst frequency during 60% VO2max than the control value. Both heart rate and mean blood pressure rose significantly during 20% VO2max from the control value and increased linearly with increased exercise intensity. During light exercise, MSNA was suppressed by arterial and cardiopulmonary baroreceptors as a result of the hemodynamic changes associated with leg muscle pumping. The baroreflex inhibition may overcome the muscle metaboreflex excitation to induce MSNA suppression during light exercise. These results suggest that during light exercise MSNA is inhibited, perhaps due to loading of the cardiopulmonary and arterial baroreflexes, and that during heavier exercise the increase in MSNA occurs as muscle metaboreflexes are activated.


2002 ◽  
Vol 282 (6) ◽  
pp. H2210-H2215 ◽  
Author(s):  
Mazhar H. Khan ◽  
Allen R. Kunselman ◽  
Urs A. Leuenberger ◽  
William R. Davidson ◽  
Chester A. Ray ◽  
...  

Bed rest reduces orthostatic tolerance. Despite decades of study, the cause of this phenomenon remains unclear. In this report we examined hemodynamic and sympathetic nerve responses to graded lower body negative pressure (LBNP) before and after 24 h of bed rest. LBNP allows for baroreceptor disengagement in a graded fashion. We measured heart rate (HR), cardiac output (HR × stroke volume obtained by echo Doppler), and muscle sympathetic nerve activity (MSNA) during a progressive and graded LBNP paradigm. Negative pressure was increased by 10 mmHg every 3 min until presyncope or completion of −60 mmHg. After bed rest, LBNP tolerance was reduced in 11 of 13 subjects ( P < .023), HR was greater ( P< .002), cardiac output was unchanged, and the ability to augment MSNA at high levels of LBNP was reduced (rate of rise for 30- to 60-mmHg LBNP before bed rest 0.073 bursts · min−1 · mmHg−1; after bed rest 0.035 bursts · min−1 · mmHg−1; P < 0.016). These findings suggest that 24 h of bed rest reduces sympathetic nerve responses to LBNP.


Hypertension ◽  
2020 ◽  
Vol 76 (3) ◽  
pp. 997-1005 ◽  
Author(s):  
Daniel A. Keir ◽  
Mark B. Badrov ◽  
George Tomlinson ◽  
Catherine F. Notarius ◽  
Derek S. Kimmerly ◽  
...  

As with blood pressure, age-related changes in muscle sympathetic nerve activity (MSNA) may differ nonlinearly between sexes. Data acquired from 398 male (age: 39±17; range: 18–78 years [mean±SD]) and 260 female (age: 37±18; range: 18–81 years) normotensive healthy nonmedicated volunteers were analyzed using linear regression models with resting MSNA burst frequency as the outcome and the predictors sex, age, MSNA, blood pressure, and body mass index modelled with natural cubic splines. Age and body mass index contributed 41% and 11%, respectively, of MSNA variance in females and 23% and 1% in males. Overall, changes in MSNA with age were sigmoidal. At age 20, mean MSNA of males and females were similar, then diverged significantly, reaching in women a nadir at age 30. After 30, MSNA increased nonlinearly in both sexes. Both MSNA discharge and blood pressure were lower in females until age 50 (17±9 versus 25±10 bursts·min −1 ; P <1×10 −19 ; 106±11/66±8 versus 116±7/68±9 mm Hg; P <0.01) but converged thereafter (38±11 versus 35±12 bursts·min −1 ; P =0.17; 119±15/71±13 versus 120±13/72±9 mm Hg; P >0.56). Compared with age 30, MSNA burst frequency at age 70 was 57% higher in males but 3-fold greater in females; corresponding increases in systolic blood pressure were 1 (95% CI, −4 to 5) and 12 (95% CI, 6–16) mm Hg. Except for concordance in females beyond age 40, there was no systematic change with age in any resting MSNA-blood pressure relationship. In normotensive adults, MSNA increases after age 30, with ascendance steeper in women.


1993 ◽  
Vol 264 (1) ◽  
pp. H1-H7 ◽  
Author(s):  
C. A. Ray ◽  
R. F. Rea ◽  
M. P. Clary ◽  
A. L. Mark

Previous studies examining muscle sympathetic nerve activity (MSNA) during dynamic exercise have focused on upper extremity exercise. The present study was undertaken to investigate 1) MSNA responses to dynamic one-legged knee extensions (DLE) and 2) the role of the cardiopulmonary baroreflexes in the modulation of MSNA responses to DLE. MSNA was measured during 4 min of DLE at 20 (n = 10) and 30 W (n = 9) and during 3 min of DLE at 40 W (n = 9). DLE was performed in the upright (sitting) position and MSNA was recorded in the contralateral leg (peroneal nerve). DLE elicited significant increases in mean arterial pressure (MAP) and heart rate (HR; P < 0.05). In contrast to previous studies using dynamic arm exercise, MSNA (bursts/min) decreased by 25% (P < 0.05) during the first minute of DLE from resting control and remained suppressed during the remaining 3 min of DLE at 20 and 30 W. During the first minute of DLE at 40 W, MSNA (bursts/min) decreased by 18% (P < 0.05), but returned to control levels during the last minute of exercise. Because dynamic leg exercise in the upright position increases venous return, we postulated that upright DLE might increase cardiac filling pressures and stimulate the cardiopulmonary baroreceptors resulting in suppression of MSNA. To investigate this possibility, we measured MSNA and central venous pressure (CVP) during 4 min of both supine and upright DLE at 30 W. MAP, HR, and CVP increased and MSNA decreased from 30 +/- 3 to 22 +/- 3 bursts/min (mean exercise value; P < 0.05) during upright DLE.(ABSTRACT TRUNCATED AT 250 WORDS)


1999 ◽  
Vol 277 (6) ◽  
pp. H2348-H2352 ◽  
Author(s):  
C. G. Crandall ◽  
R. A. Etzel ◽  
D. B. Farr

Whole body heating decreases central venous pressure (CVP) while increasing muscle sympathetic nerve activity (MSNA). In normothermia, similar decreases in CVP elevate MSNA, presumably via cardiopulmonary baroreceptor unloading. The purpose of this project was to identify whether increases in MSNA during whole body heating could be attributed to cardiopulmonary baroreceptor unloading coincident with the thermal challenge. Seven subjects were exposed to whole body heating while sublingual temperature, skin blood flow, heart rate, arterial blood pressure, and MSNA were monitored. During the heat stress, 15 ml/kg warmed saline was infused intravenously over 7–10 min to increase CVP and load the cardiopulmonary baroreceptors. We reported previously that this amount of saline was sufficient to return CVP to pre-heat stress levels. Whole body heating increased MSNA from 25 ± 3 to 39 ± 3 bursts/min ( P < 0.05). Central blood volume expansion via rapid saline infusion did not significantly decrease MSNA (44 ± 4 bursts/min, P > 0.05 relative to heat stress period) and did not alter mean arterial blood pressure (MAP) or pulse pressure. To identify whether arterial baroreceptor loading decreases MSNA during heat stress, in a separate protocol MAP was elevated via steady-state infusion of phenylephrine during whole body heating. Increasing MAP from 82 ± 3 to 93 ± 4 mmHg ( P < 0.05) caused MSNA to decrease from 36 ± 3 to 15 ± 4 bursts/min ( P < 0.05). These data suggest that cardiopulmonary baroreceptor unloading during passive heating is not the primary mechanism resulting in elevations in MSNA. Moreover, arterial baroreceptors remain capable of modulating MSNA during heat stress.


2004 ◽  
Vol 287 (5) ◽  
pp. H2147-H2153 ◽  
Author(s):  
Masashi Ichinose ◽  
Mitsuru Saito ◽  
Takeshi Ogawa ◽  
Keiji Hayashi ◽  
Narihiko Kondo ◽  
...  

We tested the hypothesis that orthostatic stress would modulate the arterial baroreflex (ABR)-mediated beat-by-beat control of muscle sympathetic nerve activity (MSNA) in humans. In 12 healthy subjects, ABR control of MSNA (burst incidence, burst strength, and total activity) was evaluated by analysis of the relation between beat-by-beat spontaneous variations in diastolic blood pressure (DAP) and MSNA during supine rest (CON) and at two levels of lower body negative pressure (LBNP: −15 and −35 mmHg). At −15 mmHg LBNP, the relation between burst incidence (bursts per 100 heartbeats) and DAP showed an upward shift from that observed during CON, but the further shift seen at −35 mmHg LBNP was only marginal. The relation between burst strength and DAP was shifted upward at −15 mmHg LBNP (vs. CON) and further shifted upward at −35 mmHg LBNP. At −15 mmHg LBNP, the relation between total activity and DAP was shifted upward from that obtained during CON and further shifted upward at −35 mmHg LBNP. These results suggest that ABR control of MSNA is modulated during orthostatic stress and that the modulation is different between a mild (nonhypotensive) and a moderate (hypotensive) level of orthostatic stress.


Sign in / Sign up

Export Citation Format

Share Document