scholarly journals Mechanical support of the pressure overloaded right ventricle: an acute feasibility study comparing low and high flow support

2015 ◽  
Vol 309 (4) ◽  
pp. H615-H624 ◽  
Author(s):  
Tom Verbelen ◽  
Jelle Verhoeven ◽  
Motohiko Goda ◽  
Daniel Burkhoff ◽  
Marion Delcroix ◽  
...  

The objectives of this study were to assess the feasibility of low flow right ventricular support and to describe the hemodynamic effects of low versus high flow support in an animal model of acute right ventricular pressure overload. A Synergy Pocket Micro-pump (HeartWare International, Framingham, MA) was implanted in seven sheep. Blood was withdrawn from the right atrium to the pulmonary artery. Hemodynamics and pressure-volume loops were recorded in baseline conditions, after banding the pulmonary artery, and after ligating the right coronary artery in these banded sheep. End-organ perfusion (reflected by total cardiac output and arterial blood pressure) improved in all conditions. Intrinsic right ventricular contractility was not significantly impacted by support. Diastolic unloading of the pressure overloaded right ventricle (reflected by decreases in central venous pressure, end-diastolic pressure and volume, and ventricular capacitance) was successful, but with a concomitant and flow-dependent increase of the systolic afterload. This unloading diminished with right ventricular ischemia. Right ventricular mechanical support improves arterial blood pressure and cardiac output. It provides diastolic unloading of the right ventricle, but with a concomitant and right ventricular assist device flow-dependent increase of systolic afterload. These effects are most distinct in the pressure overloaded right ventricle without profound ischemic damage. We advocate the low flow strategy, which is potentially beneficial for the afterload sensitive right ventricle and has the advantage of avoiding excessive increases in pulmonary artery pressure when pulmonary hypertension exists. This might protect against the development of pulmonary edema and hemorrhage.

2020 ◽  
pp. 039139882095421
Author(s):  
Tom Verbelen ◽  
Michael Halwes ◽  
Bart Meyns

Objectives: To assess the in vivo hemodynamic effects on the pressure overloaded right ventricle of RAS-Q® technology, the world’s first gas exchanger with a fully integrated compliance. Methods: In six acute in vivo trials RAS-Q was implanted in sheep between the pulmonary artery and left atrium. Right ventricular pressure overload was induced by pulmonary artery banding. Pressures and flows were recorded in baseline, moderate and severe pulmonary hypertension conditions. In one trial, RAS-Q was benchmarked against the pediatric Quadrox-i®. Results: With 1.00 and 1.17 L/min, RAS-Q delivered 31% and 39% of the total cardiac output in moderate and severe pulmonary hypertension, respectively. Pulmonary artery pressures and mean pulmonary artery pressure/mean arterial blood pressure ratio successfully decreased, implying a successful right ventricular unloading. Cardiac output was restored to normal levels in both pulmonary hypertension conditions. With both devices in parallel, RAS-Q provided three times higher flow rates and a 10 times higher pressure relief, compared to the pediatric Quadrox-i. Conclusion: A gas exchanger with a fully integrated compliance better unloads the right ventricle compared to a non-compliant gas exchanger and it can restore cardiac output to normal levels in cases of severe pulmonary hypertension.


2005 ◽  
Vol 99 (5) ◽  
pp. 2028-2035 ◽  
Author(s):  
M. J. Campen ◽  
L. A. Shimoda ◽  
C. P. O’Donnell

We investigated the effects of 1) acute hypoxia and 2) 5 wk of chronic intermittent hypoxia (IH) on the systemic and pulmonary circulations of C57BL/6J mice. Mice were chronically instrumented with either femoral artery or right ventricular catheters. In response to acute hypoxia (4 min of 10% O2; n = 6), systemic arterial blood pressure fell ( P < 0.005) from 107.7 ± 2.5 to 84.7 ± 6.5 mmHg, whereas right ventricular pressure increased ( P < 0.005) from 11.7 ± 0.8 to 14.9 ± 1.3 mmHg. Another cohort of mice was then exposed to IH for 5 wk (O2 nadir = 5%, 60-s cycles, 12 h/day) and then implanted with catheters. In response to 5 wk of chronic IH, mice ( n = 8) increased systemic blood pressure by 7.5 mmHg, left ventricle + septum weight by 32.2 ± 7.5 × 10−2 g/100 g body wt ( P < 0.015), and right ventricle weight by 19.3 ± 3.2 × 10−2 g/100 g body wt ( P < 0.001), resulting in a 14% increase in the right ventricle/left ventricle + septum weight ( P < 0.005). We conclude that in C57BL/6J mice 1) acute hypoxia causes opposite effects on the pulmonary and systemic circulations, leading to preferential loading of the right heart; and 2) chronic IH in mice results in mild to moderate systemic and pulmonary hypertension, with resultant left- and right-sided ventricular hypertrophy.


1980 ◽  
Vol 59 (s6) ◽  
pp. 465s-468s ◽  
Author(s):  
T. L. Svendsen ◽  
J. E. Carlsen ◽  
O. Hartling ◽  
A. McNair ◽  
J. Trap-Jensen

1. Dose-response curves for heart rate, cardiac output, arterial blood pressure and pulmonary artery pressure were obtained in 16 male patients after intravenous administration of three increasing doses of pindolol, propranolol or placebo. All patients had an uncomplicated acute myocardial infarction 6–8 months earlier. 2. The dose-response curves were obtained at rest and during repeated bouts of supine bicycle exercise. The cumulative dose amounted to 0.024 mg/kg body weight for pindolol and to 0.192 mg/kg body weight for propranolol. 3. At rest propranolol significantly reduced heart rate and cardiac output by 12% and 15% respectively. Arterial mean blood pressure was reduced by 9.2 mmHg. Mean pulmonary artery pressure increased significantly by 2 mmHg. Statistically significant changes in these variables were not seen after pindolol or placebo. 4. During exercise pindolol and propranolol both reduced cardiac output, heart rate and arterial blood pressure to the same extent. After propranolol mean pulmonary artery pressure was increased significantly by 3.6 mmHg. Pindolol and placebo did not change pulmonary artery pressure significantly. 5. The study suggests that pindolol may offer haemodynamic advantages over β-receptor-blocking agents without intrinsic sympathomimetic activity during low activity of the sympathetic nervous system, and may be preferable in situations where the β-receptor-blocking effect is required only during physical or psychic stress.


2017 ◽  
Vol 136 (3) ◽  
pp. 262-265 ◽  
Author(s):  
Turgut Karabag ◽  
Caner Arslan ◽  
Turab Yakisan ◽  
Aziz Vatan ◽  
Duygu Sak

ABSTRACT CONTEXT: Obstruction of the right ventricular outflow tract due to metastatic disease is rare. Clinical recognition of cardiac metastatic tumors is rare and continues to present a diagnostic and therapeutic challenge. CASE REPORT: We present the case of a patient who had severe respiratory insufficiency and whose clinical examinations revealed a giant tumor mass extending from the right ventricle to the pulmonary artery. We discuss the diagnostic and therapeutic options. CONCLUSION: In patients presenting with acute right heart failure, right ventricular masses should be kept in mind. Transthoracic echocardiography appears to be the most easily available, noninvasive, cost-effective and useful technique in making the differential diagnosis.


2020 ◽  
Author(s):  
Song Jiyang ◽  
Wan Nan ◽  
Shen Shutong ◽  
Wei Ying ◽  
Cao Yunshan

Abstract Background: Right ventricular (RV) failure induced by sustained pressure overload is a major contributor to morbidity and mortality in several cardiopulmonary disorders. Reliable and reproducible animal models of RV failure are important in order to investigate disease mechanisms and effects of potential therapeutic strategies. To establish a rat model of RV failure perfectly, we observed the right ventricle and carotid artery hemodynamics characteristics in different degrees of pulmonary artery banding of rats of different body weights. Methods: Rats were subjected to 6 groups:control(0%, n=5)(pulmonary arterial banding 0%), PAB(1-30%, n=4)(pulmonary arterial banding1-30%), PAB(31-60%, n=6)(pulmonary arterial banding31-60%),PAB(61-70%, n=5)(pulmonary arterial bandin61-70%), PAB(71-80%,n=4)(pulmonary arterial banding71-80%), PAB(100%, n=3)(pulmonary arterial banding 100%). We measured the right ventricular pressure(RVP) by right heart catheterization when the pulmonary arterial was ligated. Results: The RVP gradually increased with increasing degree of banding, but when occlusion level exceeding 70%, high pressure state can be only maintained for a few minutes or seconds, and then the RVP drops rapidly until it falls below the normal pressure, which in Group F particularly evident.Conclusions: RVP have different reactions when the occlusion level is not the same, and the extent of more than 70% ligation is a successful model of acute right heart failure. These results may have important consequences for therapeutic strategies to prevent acute right heart failure.


1995 ◽  
Vol 78 (5) ◽  
pp. 1793-1799 ◽  
Author(s):  
M. Kamitomo ◽  
T. Ohtsuka ◽  
R. D. Gilbert

We exposed fetuses to high-altitude (3,820 m) hypoxemia from 30 to 130 days gestation, when we measured fetal heart rate, right and left ventricular outputs with electromagnetic flow probes, and arterial blood pressure during an isoproterenol dose-response infusion. We also measured the distribution of cardiac output with radiolabeled microspheres during the maximal isoproterenol dose. Baseline fetal arterial blood pressure was higher in long-term hypoxemic fetuses (50.1 +/- 1.3 vs. 43.4 +/- 1.0 mmHg) but fell during the isoproterenol infusion to 41.3 +/- 1.4 and 37.5 +/- 1.4 mmHg, respectively, at the highest dose. Heart rate was the same in both groups and did not differ during isoproterenol infusion. Baseline fetal cardiac output was lower in the hypoxemic group (339 +/- 18 vs. 436 +/- 19 ml.min-1.kg-1) due mainly to a reduction in right ventricular output. During the isoproterenol infusion, right ventricular output increased to the same extent in both hypoxemic and normoxic fetuses (approximately 35%); however, left ventricular output increased only approximately 15% in the hypoxemic group compared with approximately 40% in the normoxic group. The percent change in individual organ blood flows during isoproterenol infusion in the hypoxemic groups was not significantly different from the normoxic group. All of the mechanisms that might be responsible for the differential response of the fetal left and right ventricles to long-term hypoxia are not understood and need further exploration.


2012 ◽  
Vol 2012 ◽  
pp. 1-4
Author(s):  
Nina P. Hofmann ◽  
Hassan Abdel-Aty ◽  
Stefan Siebert ◽  
Hugo A. Katus ◽  
Grigorios Korosoglou

Annuloaortic ectasia is a relatively rare diagnosis. Herein, we report an unusual case of an annuloaortic ectasia with asymmetric dilatation of the right coronary bulb mimicking a membranous ventricular septal defect (VSD) with Eisenmenger reaction by transthoracic echocardiography. Aortic angiography showed a dilated aortic root and moderate aortic regurgitation. Right cardiac catheterization, on the other hand, exhibited normal pulmonary artery blood pressure and normal pulmonary resistance, whereas normal venous gas values were measured throughout the caval vein and the right atrium, excluding relevant left-right shunting. Further diagnostic workup by cardiac computed tomography angiography (CCTA) unambiguously illustrated the asymmetric geometry of the ectatic aortic cusp and root causing compression of the right heart and of the right ventricular (RV) outflow tract. After review of echocardiographic acquisitions, the blood flow detected between the left and right ventricles (mimicking VSD) was interpreted as turbulent inflow from the left ventricle into the ectatic right coronary cusp. Furthermore, elevated pulmonary artery blood pressure measured by echocardiography was attributed to “functional pulmonary stenosis” due to compression of the RV outflow tract by the aorta, as demonstrated by CCTA.


Author(s):  
R. M. Vitovsky ◽  
P. M. Semeniv ◽  
A. O. Rusnak ◽  
Y. R. Ivanov ◽  
V. F. Onischenko

The case of differential diagnosis and treatment of a patient with pulmonary embolism (PE), the source of which was the thrombus formed in the right ventricle of the heart, is presented. The peculiarity of this case was the untimely diagnosis of the disease, which simulated pneumonia, the treatment of which did not improve the clinical condition of the patient. Tomography allowed to determine the thrombosis of the right branch of the pulmonary artery and to send the patient to the cardiac surgery center for further treatment. Diagnosis of a probable source of embolism occurred after echocardiography, which revealed a tumor-like lesion of the right ventricle of large size and dense consistency. The results of surgical treatment of the patient, during which extensive formation of the right ventricle was removed, a dense elastic consistency with signs of fragmentation confirmed the prediction of this particular source of pulmonary embolism. Removal of blood clots from the right branch of the pulmonary embolism showed their similar macrostructure with right ventricular formation. The appearance and macrostructure of the formation did not allow to determine with certainty its character. Only histological examination was able to determine the thrombogenicity of the origin of this formation. The recurrent nature of pneumonia, without the presence of risk factors, in young patients may be the basis for more thorough examination to identify atypical clinical conditions. The restoration of the source of the body is of great importancefor the prevention of its relapse. Finding the source of pulmonary embolism should necessarily include echocardiography to carefully examine possible lesions of intracardiac structures with the formation of blood clots that may be responsible for its occurrence.


Sign in / Sign up

Export Citation Format

Share Document