Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway

2015 ◽  
Vol 308 (5) ◽  
pp. H424-H434 ◽  
Author(s):  
Tongshuai Chen ◽  
Jingyuan Li ◽  
Junni Liu ◽  
Na Li ◽  
Shujian Wang ◽  
...  

Sirtuins [sirtuin (SIRT)1–SIRT7] mediate the longevity-promoting effects of calorie restriction in yeast, worms, flies, and mice. Additionally, SIRT3 is the only SIRT analog whose increased expression has been shown to be associated with longevity in humans. The polyphenol resveratrol (RSV) is the first compound discovered able to mimic calorie restriction by stimulating SIRTs. In the present study, we report that RSV activated SIRT3 in cardiac fibroblasts both in vivo and in vitro. Moreover, in wild-type mice, RSV prevented cardiac hypertrophy in response to hypertrophic stimuli. However, this protective effect was not observed in SIRT3 knockout mice. Additionally, the activation of SIRT3 by RSV ameliorated collagen deposition and improved cardiac function. In isolated cardiac fibroblasts, pretreatment with RSV suppressed fibroblast-to-myoblast transformation by inhibiting the transforming growth factor-β/Smad3 pathway. Therefore, these data indicate that the activation of SIRT3 by RSV could ameliorate cardiac fibrosis and improve cardiac function via the transforming growth factor-β/Smad3 pathway.

2017 ◽  
Vol 114 (1) ◽  
pp. 77-89 ◽  
Author(s):  
Filippo Perbellini ◽  
Samuel A Watson ◽  
Martina Scigliano ◽  
Samha Alayoubi ◽  
Sebastian Tkach ◽  
...  

Abstract Aims Cardiac fibroblasts (CFs) are considered the principal regulators of cardiac fibrosis. Factors that influence CF activity are difficult to determine. When isolated and cultured in vitro, CFs undergo rapid phenotypic changes including increased expression of α-SMA. Here we describe a new model to study CFs and their response to pharmacological and mechanical stimuli using in vitro cultured mouse, dog and human myocardial slices. Methods and results Unloading of myocardial slices induced CF proliferation without α-SMA expression up to 7 days in culture. CFs migrating onto the culture plastic support or cultured on glass expressed αSMA within 3 days. The cells on the slice remained αSMA(−) despite transforming growth factor-β (20 ng/ml) or angiotensin II (200 µM) stimulation. When diastolic load was applied to myocardial slices using A-shaped stretchers, CF proliferation was significantly prevented at Days 3 and 7 (P < 0.001). Conclusions Myocardial slices allow the study of CFs in a multicellular environment and may be used to effectively study mechanisms of cardiac fibrosis and potential targets.


1997 ◽  
Vol 185 (2) ◽  
pp. 273-280 ◽  
Author(s):  
Angela M. Hales ◽  
Coral G. Chamberlain ◽  
Christopher R. Murphy ◽  
John W. McAvoy

Cataract, already a major cause of visual impairment and blindness, is likely to become an increasing problem as the world population ages. In a previous study, we showed that transforming growth factor-β (TGFβ) induces rat lenses in culture to develop opacities and other changes that have many features of human subcapsular cataracts. Here we show that estrogen protects against cataract. Lenses from female rats are more resistant to TGFβ-induced cataract than those from males. Furthermore, lenses from ovariectomized females show increased sensitivity to the damaging effects of TGFβ and estrogen replacement in vivo, or exposure to estrogen in vitro, restores resistance. Sex-dependent and estrogen-related differences in susceptibility to cataract formation, consistent with a protective role for estrogen, have been noted in some epidemiological studies. The present study in the rat indicates that estrogen provides protection against cataract by countering the damaging effects of TGFβ. It also adds to an increasing body of evidence that hormone replacement therapy protects postmenopausal women against various diseases.


2017 ◽  
Vol 204 (3-4) ◽  
pp. 191-198 ◽  
Author(s):  
Gemma A. Figtree ◽  
Kristen J. Bubb ◽  
Owen Tang ◽  
Eddy Kizana ◽  
Carmine Gentile

Spheroid cultures are among the most explored cellular biomaterials used in cardiovascular research, due to their improved integration of biochemical and physiological features of the heart in a defined architectural three-dimensional microenvironment when compared to monolayer cultures. To further explore the potential use of spheroid cultures for research, we engineered a novel in vitro model of the heart with vascularized cardiac spheroids (VCSs), by coculturing cardiac myocytes, endothelial cells, and fibroblasts isolated from dissociated rat neonatal hearts (aged 1-3 days) in hanging drop cultures. To evaluate the validity of VCSs in recapitulating pathophysiological processes typical of the in vivo heart, such as cardiac fibrosis, we then treated VCSs with transforming growth factor beta 1 (TGFβ1), a known profibrotic agent. Our mRNA analysis demonstrated that TGFβ1-treated VCSs present elevated levels of expression of connective tissue growth factor, fibronectin, and TGFβ1 when compared to control cultures. We demonstrated a dramatic increase in collagen deposition following TGFβ1 treatment in VCSs in the PicroSirius Red-stained sections. Doxorubicin, a renowned cardiotoxic and profibrotic agent, triggered apoptosis and disrupted vascular networks in VCSs. Taken together, our findings demonstrate that VCSs are a valid model for the study of the mechanisms involved in cardiac fibrosis, with the potential to be used to investigate novel mechanisms and therapeutics for treating and preventing cardiac fibrosis in vitro.


2015 ◽  
Vol 13 (1) ◽  
pp. 522-528 ◽  
Author(s):  
JING CHEN ◽  
DIAN-GANG LIU ◽  
HUI WANG ◽  
XIAO-NING WU ◽  
MIN CONG ◽  
...  

2003 ◽  
Vol 285 (4) ◽  
pp. C823-C830 ◽  
Author(s):  
Bernard A. J. Roelen ◽  
Ori S. Cohen ◽  
Malay K. Raychowdhury ◽  
Deborah N. Chadee ◽  
Ying Zhang ◽  
...  

Smad4, the common Smad, is central for transforming growth factor (TGF)-β superfamily ligand signaling. Smad4 has been shown to be constitutively phosphorylated (Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin C-H, Miyazono K, and ten Dijke P. EMBO J 16: 5353-5362, 1997), but the site(s) of phosphorylation, the kinase(s) that performs this phosphorylation, and the significance of the phosphorylation of Smad4 are currently unknown. This report describes the identification of a consensus ERK phosphorylation site in the linker region of Smad4 at Thr276. Our data show that ERK can phosphorylate Smad4 in vitro but not Smad4 with mutated Thr276. Flag-tagged Smad4-T276A mutant protein accumulates less efficiently in the nucleus after stimulation by TGF-β and is less efficient in generating a transcriptional response than Smad4 wild-type protein. Tryptic phosphopeptide mapping identified a phosphopeptide in Smad4 wild-type protein that was absent in phosphorylated Smad4-T276A mutant protein. Our results suggest that MAP kinase can phosphorylate Thr276 of Smad4 and that phosphorylation can lead to enhanced TGF-β-induced nuclear accumulation and, as a consequence, enhanced transcriptional activity of Smad4.


1998 ◽  
Vol 66 (3) ◽  
pp. 1233-1236 ◽  
Author(s):  
Virmondes Rodrigues ◽  
João Santana da Silva ◽  
Antonio Campos-Neto

ABSTRACT Hamsters infected with Leishmania donovani develop a disease similar to human kala-azar. They present hypergammaglobulinemia, and their T cells do not respond to parasite antigens. This unresponsiveness has been primarily ascribed to defects in antigen-presenting cells (APCs), because these cells are unable to stimulate proliferation of parasite-specific T cells from immunized animals. In this study, we show that APCs (adherent spleen cells) fromL. donovani-infected hamsters produce high levels of the inhibitory cytokine transforming growth factor β (TGF-β). Immunohistochemical studies with an anti-TGF-β monoclonal antibody (MAb) showed that this cytokine is abundantly produced in vivo by the spleen cells of infected animals. In addition, high levels of TGF-β are produced in vitro by infected hamster cells, either spontaneously or after stimulation with parasite antigen or lipopolysaccharide. Furthermore, in vivo-infected adherent cells obtained from spleens ofL. donovani-infected hamsters caused profound inhibition of the in vitro antigen-induced proliferative response of lymph node cells from hamsters immunized with leishmanial antigens. Moreover, this inhibition was totally abrogated by the anti-TGF-β MAb. These results suggest that the immunosuppression observed in visceral leishmaniasis is, at least in part, due to the abundant production of TGF-β during the course of the infection.


2000 ◽  
Vol 15 (1) ◽  
pp. 68-81 ◽  
Author(s):  
Sarah L. Dallas ◽  
Douglas R. Keene ◽  
Scott P. Bruder ◽  
Juha Saharinen ◽  
Lynn Y. Sakai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document