Astrocytes are a key conduit for upstream signaling of vasodilation during cerebral cortical neuronal activation in vivo

2008 ◽  
Vol 294 (2) ◽  
pp. H622-H632 ◽  
Author(s):  
Hao-Liang Xu ◽  
Lizhen Mao ◽  
Shuhua Ye ◽  
Chanannait Paisansathan ◽  
Francesco Vetri ◽  
...  

Astrocytes play an important role in the coupling between neuronal activity and brain blood flow via their capacity to “sense” neuronal activity and transmit that information to parenchymal arterioles. Here we show another role for astrocytes in neurovascular coupling: the ability to act as a signaling conduit for the vitally important process of upstream vasodilation (represented by pial arterioles) during both excessive (seizure) and physiological (sciatic nerve stimulation) increases in cerebral cortical neuronal activity. The predominance of an astrocytic rather than a vascular route was indicated by data showing that pial arteriolar-dilating responses to neuronal activation were completely blocked following selective disruption of the superficial glia limitans, whereas interference with interendothelial signaling was without effect. Results also revealed contributions from connexin 43, implying a role for gap junctions and/or hemichannels in the signaling process and that signaling from the glia limitans to pial arterioles may involve a diffusible mediator.

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Jasenka Zubcevic ◽  
Pablo D Perez ◽  
Jessica Marulanda Carvajal ◽  
Mohan K Raizada ◽  
Marcelo Febo

Introduction: An overactive brain renin-angiotensin system is a major factor in the establishment of neurogenic hypertension in the spontaneously hypertensive rat (SHR). However, there is no concrete evidence to indicate that this is associated with enhanced neuronal activity in the brain. The objective here was to use the MRI to establish the effect of ANGII on neuronal activity in the autonomic brain areas. We propose that a single ANGII injection will cause a long-lasting neuronal response in the autonomic brain areas, which will be exaggerated in the SHR. Methods: In vivo basal and ANGII-evoked neuronal activity was measured in the Wistar-Kyoto (WKY) rat and the SHR using manganese-enhanced MRI (MEMRI) at 4.7Tesla. Rats were treated with manganese chloride (MnCl 2 30 mM solution, i.p .;16-20 hrs prior to the MRI), which labels active neurons. T 1 -weighted images were obtained 16-20 hrs after a single ANGII injection (0.32μg/kg i.p.). Coronal slice scans (caudally from end of the cerebellum towards the hypothalamus) were processed using itkSNAP, and data analyzed for normalized signal intensity. Results: Acute ANGII injection caused an immediate pressor response in the WKY (ΔSBP=∼20mmHg), normalizing within 2 hours. Despite this, ANGII evoked a persistent PVN neuronal activation, which was elevated by 22±4% in the WKY, and by 187±45% in the PVN of SHR. As a result, there was a ∼8.5fold increase in the ANGII-dependent neuronal activity in the PVN of SHR compared to WKY. Furthermore, there was a ∼2.5fold decrease in the NTS neuronal activity in the SHR compared to WKY. Conclusion: The present study shows for the first time the correlation between ANGII and autonomic neuronal activation. Even a single systemic ANGII injection results in a lasting effect on the brain. This is particularly apparent in the SHR, which exhibited an exaggerated neuronal response to the ANGII stimulus, reflected in the elevated PVN neuronal activation corresponding to the enhanced sympathetic drive, and in the depressed NTS activation corresponding to the dysfunction in the barorereflex processing. Thus, repeated pro-hypertensive stimuli in the autonomic brain areas may lead to pre-sympathetic neuronal plasticity, resulting in heightened sympathetic drive and hypertension.


2005 ◽  
Vol 288 (1) ◽  
pp. H382-H388 ◽  
Author(s):  
Hao-Liang Xu ◽  
Shuhua Ye ◽  
Verna L. Baughman ◽  
Douglas L. Feinstein ◽  
Dale A. Pelligrino

We examined whether the glia limitans (GL) influences pial arteriolar relaxation elicited in vivo by the purinergic (P2Y1 receptor) agonist ADP in female rats, and whether that influence is altered in ovariectomized (Ovx) females. A validated model for GL injury was used, topical application of the gliotoxin l-α-aminoadipic acid (l-αAAA), 24 h before the study. In both intact and Ovx females, l-αAAA had no effect on responses to the NO donor, S-nitroso- N-acetyl penicillamine, but ADP-induced pial arteriolar dilations were significantly reduced (by 33–90%), compared with vehicle-treated controls. When NG-nitro-l-arginine (l-NNA) was administered to l-αAAA-treated rats, the ADP response was virtually lost in intact females, but no further reductions were observed in the Ovx rats. On the other hand, in l-αAAA-treated Ovx females, when the gap junction blocker, Gap 27, was subsequently added to the suffusate, ADP reactivity fell to very low levels. In vehicle-treated control rats, l-NNA and Gap 27 reduced ADP reactivity by ∼50% in intact and Ovx females, respectively. An earlier study indicated that the endothelium was a key site of influence for l-NNA (intact) and Gap 27 (Ovx). Thus present and previous results imply that the ADP response in pial arterioles represents the additive actions of an endothelial and a GL component. That supposition was confirmed in the present study by the finding that combining endothelial and GL injury produced an essentially complete loss of ADP reactivity in both intact and Ovx females. Finally, topical application of the selective P2Y1 antagonist, MRS-2179, was associated with a nearly complete suppression of the ADP response in both intact and Ovx females. These results suggest that 1) ADP-induced pial arteriolar dilation involves additive contributions from P2Y1 receptors present in both vascular endothelium and the GL; 2) the influence of the GL component is not altered by ovariectomy; and 3) the gap junction-dependent component of the ADP response in Ovx females is unlikely to include the GL and probably resides in the vessels themselves.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Maria Mensch ◽  
Jade Dunot ◽  
Sandy M. Yishan ◽  
Samuel S. Harris ◽  
Aline Blistein ◽  
...  

Abstract Background Amyloid precursor protein (APP) processing is central to Alzheimer’s disease (AD) etiology. As early cognitive alterations in AD are strongly correlated to abnormal information processing due to increasing synaptic impairment, it is crucial to characterize how peptides generated through APP cleavage modulate synapse function. We previously described a novel APP processing pathway producing η-secretase-derived peptides (Aη) and revealed that Aη–α, the longest form of Aη produced by η-secretase and α-secretase cleavage, impaired hippocampal long-term potentiation (LTP) ex vivo and neuronal activity in vivo. Methods With the intention of going beyond this initial observation, we performed a comprehensive analysis to further characterize the effects of both Aη-α and the shorter Aη-β peptide on hippocampus function using ex vivo field electrophysiology, in vivo multiphoton calcium imaging, and in vivo electrophysiology. Results We demonstrate that both synthetic peptides acutely impair LTP at low nanomolar concentrations ex vivo and reveal the N-terminus to be a primary site of activity. We further show that Aη-β, like Aη–α, inhibits neuronal activity in vivo and provide confirmation of LTP impairment by Aη–α in vivo. Conclusions These results provide novel insights into the functional role of the recently discovered η-secretase-derived products and suggest that Aη peptides represent important, pathophysiologically relevant, modulators of hippocampal network activity, with profound implications for APP-targeting therapeutic strategies in AD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryohei Satoh ◽  
Hiroko Eda-Fujiwara ◽  
Aiko Watanabe ◽  
Yasuharu Okamoto ◽  
Takenori Miyamoto ◽  
...  

AbstractMale budgerigars (Melopsittacus undulatus) are open-ended learners that can learn to produce new vocalisations as adults. We investigated neuronal activation in male budgerigars using the expression of the protein products of the immediate early genes zenk and c-fos in response to exposure to conspecific contact calls (CCs: that of the mate or an unfamiliar female) in three subregions (CMM, dNCM and vNCM) of the caudomedial pallium, a higher order auditory region. Significant positive correlations of Zenk expression were found between these subregions after exposure to mate CCs. In contrast, exposure to CCs of unfamiliar females produced no such correlations. These results suggest the presence of a CC-specific association among the subregions involved in auditory memory. The caudomedial pallium of the male budgerigar may have functional subdivisions that cooperate in the neuronal representation of auditory memory.


2021 ◽  
pp. 1-16
Author(s):  
Masaki Nakano ◽  
Yachiyo Mitsuishi ◽  
Lei Liu ◽  
Naoki Watanabe ◽  
Emi Hibino ◽  
...  

Background: Brain amyloid-β (Aβ) peptide is released into the interstitial fluid (ISF) in a neuronal activity-dependent manner, and Aβ deposition in Alzheimer’s disease (AD) is linked to baseline neuronal activity. Although the intrinsic mechanism for Aβ generation remains to be elucidated, interleukin-like epithelial-mesenchymal transition inducer (ILEI) is a candidate for an endogenous Aβ suppressor. Objective: This study aimed to access the mechanism underlying ILEI secretion and its effect on Aβ production in the brain. Methods: ILEI and Aβ levels in the cerebral cortex were monitored using a newly developed ILEI-specific ELISA and in vivo microdialysis in mutant human Aβ precursor protein-knockin mice. ILEI levels in autopsied brains and cerebrospinal fluid (CSF) were measured using ELISA. Results: Extracellular release of ILEI and Aβ was dependent on neuronal activation and specifically on tetanus toxin-sensitive exocytosis of synaptic vesicles. However, simultaneous monitoring of extracellular ILEI and Aβ revealed that a spontaneous fluctuation of ILEI levels appeared to inversely mirror that of Aβ levels. Selective activation and inhibition of synaptic receptors differentially altered these levels. The evoked activation of AMPA-type receptors resulted in opposing changes to ILEI and Aβ levels. Brain ILEI levels were selectively decreased in AD. CSF ILEI concentration correlated with that of Aβ and were reduced in AD and mild cognitive impairment. Conclusion: ILEI and Aβ are released from distinct subpopulations of synaptic terminals in an activity-dependent manner, and ILEI negatively regulates Aβ production in specific synapse types. CSF ILEI might represent a surrogate marker for the accumulation of brain Aβ.


Neuron ◽  
2006 ◽  
Vol 51 (5) ◽  
pp. 587-600 ◽  
Author(s):  
Julie M. Miwa ◽  
Tanya R. Stevens ◽  
Sarah L. King ◽  
Barbara J. Caldarone ◽  
Ines Ibanez-Tallon ◽  
...  

1986 ◽  
Vol 240 (2) ◽  
pp. 395-401 ◽  
Author(s):  
R A Challiss ◽  
D J Hayes ◽  
G K Radda

Muscle bloodflow and the rate of glucose uptake and phosphorylation were measured in vivo in rats 7 days after unilateral femoral artery ligation and section. Bloodflow was determined by using radiolabelled microspheres. At rest, bloodflow to the gastrocnemius, plantaris and soleus muscles of the ligated limb was similar to their respective mean contralateral control values; however, bilateral sciatic nerve stimulation at 1 Hz caused a less pronounced hyperaemic response in the muscles of the ligated limb, being 59, 63 and 49% of their mean control values in the gastrocnemius, plantaris and soleus muscles respectively. The rate of glucose utilization was determined by using the 2-deoxy[3H]glucose method [Ferré, Leturque, Burnol, Penicaud & Girard (1985) Biochem. J. 228, 103-110]. At rest, the rate of glucose uptake and phosphorylation was statistically significantly increased in the gastrocnemius and soleus muscles of the ligated limb, being 126 and 140% of the mean control values respectively. Bilateral sciatic nerve stimulation at 1 Hz caused a 3-5-fold increase in the rate of glucose utilization by the ligated and contralateral control limbs; furthermore, the rate of glucose utilization was significantly increased in the muscles of the ligated limb, being 140, 129 and 207% of their mean control values respectively. For the range of bloodflow to normally perfused skeletal muscle at rest or during isometric contraction determined in the present study, a linear correlation between the rate of glucose utilization and bloodflow can be demonstrated. Applying similar methods of regression analysis to glucose utilization and bloodflow to muscles of the ligated limb reveals a similar linear correlation. However, the rate of glucose utilization at a given bloodflow is increased in muscles of the ligated limb, indicating an adaptation of skeletal muscle to hypoperfusion.


Sign in / Sign up

Export Citation Format

Share Document