scholarly journals Regulation of reactive oxygen species by p53: implications for nitric oxide-mediated apoptosis

2010 ◽  
Vol 298 (6) ◽  
pp. H2192-H2200 ◽  
Author(s):  
Daniel A. Popowich ◽  
Ashley K. Vavra ◽  
Christopher P. Walsh ◽  
Hussein A. Bhikhapurwala ◽  
Nicholas B. Rossi ◽  
...  

Nitric oxide (NO) induces vascular smooth muscle cell (VSMC) apoptosis in part through activation of p53. Traditionally, p53 has been thought of as the gatekeeper, determining if a cell should undergo arrest and repair or apoptosis following exposure to DNA-damaging agents, depending on the severity of the damage. However, our laboratory previously demonstrated that NO induces apoptosis to a much greater extent in p53−/− compared with p53+/+ VSMC. Increased reactive oxygen species (ROS) within VSMC has been shown to induce VSMC apoptosis, and recently it was found that the absence of, or lack of, functional p53 leads to increased ROS and oxidative stress within different cell types. This study investigated the differences in intracellular ROS levels between p53−/− and p53+/+ VSMC and examined if these differences were responsible for the increased susceptibility to NO-induced apoptosis observed in p53−/− VSMC. We found that p53 actually protects VSMC from NO-induced apoptosis by increasing antioxidant protein expression [i.e., peroxiredoxin-3 (PRx-3)], thereby reducing ROS levels and cellular oxidative stress. We also observed that the NO-induced apoptosis in p53−/− VSMC was largely abrogated by pretreatment with catalase. Furthermore, when the antioxidant protein PRx-3 and its specific electron acceptor thioredoxin-2 were silenced within p53+/+ VSMC with small-interfering RNA, not only did these cells exhibit greater ROS production, but they also exhibited increased NO-induced apoptosis similar to that observed in p53−/− VSMC. These findings suggest that ROS mediate NO-induced VSMC apoptosis and that p53 protects VSMC from NO-induced apoptosis by decreasing intracellular ROS. This research demonstrates that p53 has antioxidant functions in stressed cells and also suggests that p53 has antiapoptotic properties.

2013 ◽  
Vol 2013 ◽  
pp. 1-3 ◽  
Author(s):  
Noah C. Jenkins ◽  
Douglas Grossman

We have recently reported a potential alternative tumor suppressor function for p16 relating to its capacity to regulate oxidative stress and observed that oxidative dysregulation in p16-depleted cells was most profound in melanocytes, compared to keratinocytes or fibroblasts. Moreover, in the absence of p16 depletion or exogenous oxidative insult, melanocytes exhibited significantly higher basal levels of reactive oxygen species (ROS) than these other epidermal cell types. Given the role of oxidative stress in melanoma development, we speculated that this increased susceptibility of melanocytes to oxidative stress (and greater reliance on p16 for suppression of ROS) may explain why genetic compromise of p16 is more commonly associated with predisposition to melanoma rather than other cancers. Here we show that the presence of melanin accounts for this differential oxidative stress in normal and p16-depleted melanocytes. Thus the presence of melanin in the skin appears to be a double-edged sword: it protects melanocytes as well as neighboring keratinocytes in the skin through its capacity to absorb UV radiation, but its synthesis in melanocytes results in higher levels of intracellular ROS that may increase melanoma susceptibility.


2010 ◽  
Vol 63 (11-12) ◽  
pp. 827-832 ◽  
Author(s):  
Tatjana Radosavljevic ◽  
Dusan Mladenovic ◽  
Danijela Vucevic ◽  
Rada Jesic-Vukicevic

Introduction. Paracetamol is an effective analgesic/antipyretic drug when used at therapeutic doses. However, the overdose of paracetamol can cause severe liver injury and liver necrosis. The mechanism of paracetamol-induced liver injury is still not completely understood. Reactive metabolite formation, depletion of glutathione and alkylation of proteins are the triggers of inhibition of mitochondrial respiration, adenosine triphosphate depletion and mitochondrial oxidant stress leading to hepatocellular necrosis. Role of oxidative stress in paracetamol-induced liver injury. The importance of oxidative stress in paracetamol hepatotoxicity is controversial. Paracetamol induced liver injury cause the formation of reactive oxygen species. The potent sources of reactive oxygen are mitochondria, neutrophils, Kupffer cells and the enzyme xatnine oxidase. Free radicals lead to lipid peroxidation, enzymatic inactivation and protein oxidation. Role of mitochondria in paracetamol-induced oxidative stress. The production of mitochondrial reactive oxygen species is increased, and the glutathione content is decreased in paracetamol overdose. Oxidative stress in mitochondria leads to mito?chondrial dysfunction with adenosine triphosphate depletion, increase mitochondrial permeability transition, deoxyribonu?cleic acid fragmentation which contribute to the development of hepatocellular necrosis in the liver after paracetamol overdose. Role of Kupffer cells in paracetamol-induced liver injury. Paracetamol activates Kupffer cells, which then release numerous cytokines and signalling molecules, including nitric oxide and superoxide. Kupffer cells are important in peroxynitrite formation. On the other hand, the activated Kupffer cells release anti-inflammatory cytokines. Role of neutrophils in paracetamol-induced liver injury. Paracetamol-induced liver injury leads to the accumulation of neutrophils, which release lysosomal enzymes and generate superoxide anion radicals through the enzyme nicotinamide adenine dinucleotide phosphate oxidase. Hydrogen peroxide, which is influenced by the neutrophil-derived enzyme myeloperoxidase, generates hypochlorus acid as a potent oxidant. Role of peroxynitrite in paracetamol-induced oxidative stress. Superoxide can react with nitric oxide to form peroxynitrite, as a potent oxidant. Nitrotyrosine is formed by the reaction of tyrosine with peroxynitrite in paracetamol hepatotoxicity. Conclusion. Overdose of paracetamol may produce severe liver injury with hepatocellular necrosis. The most important mechanisms of cell injury are metabolic activation of paracetamol, glutathione depletion, alkylation of proteins, especially mitochondrial proteins, and formation of reactive oxygen/nitrogen species.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1014 ◽  
Author(s):  
Ernestina Solórzano ◽  
Francisco J. Corpas ◽  
Salvador González-Gordo ◽  
José M. Palma

Arsenic (As) is a highly toxic metalloid for all forms of life including plants. Rice is the main food source for different countries worldwide, although it can take up high amounts of As in comparison with other crops, showing toxic profiles such as decreases in plant growth and yield. The induction of oxidative stress is the main process underlying arsenic toxicity in plants, including rice, due to an alteration of the reactive oxygen species (ROS) metabolism. The aim of this work was to gain better knowledge on how the ROS metabolism and its interaction with nitric oxide (NO) operate under As stress conditions in rice plants. Thus, physiological and ROS-related biochemical parameters in roots and shoots from rice (Oryza sativa L.) were studied under 50 μM arsenate (AsV) stress, and the involvement of the main antioxidative systems and NO in the response of plants to those conditions was investigated. A decrease of 51% in root length and 27% in plant biomass was observed with 50 μM AsV treatment, as compared to control plants. The results of the activity of superoxide dismutase (SOD) isozymes, catalase, peroxidase (POD: total and isoenzymatic), and the enzymes of the ascorbate–glutathione cycle, besides the ascorbate and glutathione contents, showed that As accumulation provoked an overall significant increase of most of them, but with different profiles depending on the plant organ, either root or shoot. Among the seven identified POD isozymes, the induction of the POD-3 in shoots under As stress could help to maintain the hydrogen peroxide (H2O2) redox homeostasis and compensate the loss of the ascorbate peroxidase (APX) activity in both roots and shoots. Lipid peroxidation was slightly increased in roots and shoots from As-treated plants. The H2O2 and NO contents were enhanced in roots and shoots against arsenic stress. In spite of the increase of most antioxidative systems, a mild oxidative stress situation appears to be consolidated overall, since the growth parameters and those from the oxidative damage could not be totally counteracted. In these conditions, the higher levels of H2O2 and NO suggest that signaling events are simultaneously occurring in the whole plant.


1997 ◽  
Vol 272 (5) ◽  
pp. L897-L902 ◽  
Author(s):  
J. J. Zulueta ◽  
R. Sawhney ◽  
F. S. Yu ◽  
C. C. Cote ◽  
P. M. Hassoun

Reactive oxygen species (ROS) play an important role in the pathogenesis of ischemia-reperfusion injury. Extracellular H2O2 generation from bovine pulmonary artery endothelial cells (EC) is known to increase in response to anoxia-reoxygenation (A-R). To determine potential sources of intracellular ROS formation in EC in response to A-R, a fluorometric assay based on the oxidation of 2',7'-dichlorofluorescin was used. Intracellular ROS production declined 40% during 6 h of anoxia (P < 0.05). After A-R, the rates of intracellular ROS formation increased to 148 +/- 9% (P < 0.001) that of normoxic EC (100 +/- 3%). In EC exposed to A-R, allopurinol and NG-methyl-L-arginine (L-NMMA), inhibitors of xanthine oxidase (XO) and nitric oxide synthase (NOS), respectively, reduced intracellular ROS formation by 25 +/- 1% (P < 0.001) and 36 +/- 4% (P < 0.01). Furthermore, at low doses (i.e., 20 microM), deferoxamine and diethylenetriaminepentaacetic acid (DTPA) significantly inhibited intracellular ROS formation. However, at 100 microM, only deferoxamine caused further reduction in DCF fluorescence. In summary, EC respond to A-R by generating increased amounts of XO- and NOS-derived intracellular ROS. The inhibition, to a similar extent, caused by allopurinol and L-NMMA, as well as the effect of deferoxamine and DTPA suggest that the ROS detected is peroxynitrite. Based on these findings and previous work, we conclude that EC generate ROS in response to A-R from at least two different sources: a plasma membrane-bound NADPH oxidase-like enzyme that releases H2O2 extracellularly and XO, which generates intracellular O2-, which in turn may react with nitric oxide to form peroxynitrite.


Blood ◽  
2005 ◽  
Vol 105 (7) ◽  
pp. 2970-2972 ◽  
Author(s):  
Andrew S. Cowburn ◽  
Jessica F. White ◽  
John Deighton ◽  
Sarah R. Walmsley ◽  
Edwin R. Chilvers

Abstract In most cell types constitutive and ligand-induced apoptosis is a caspase-dependent process. In neutrophils, however, the broad-spectrum caspase inhibitor z-VAD-fmk enhances tumor necrosis factor-α (TNFα)-induced cell death, and this has been interpreted as evidence for caspase-dependent and -independent cell death pathways. Our aim was to determine the specificity of the effect of z-VAD-fmk in neutrophils and define the potential mechanism of action. While confirming that z-VAD-fmk (&gt; 100 μM) enhances TNFα-induced neutrophil apoptosis, lower concentrations (1-30 μM) completely blocked TNFα-stimulated apoptosis. Boc-D-fmk, a similar broad-spectrum caspase inhibitor, and z-IETD-fmk, a selective caspase-8 inhibitor, caused a concentration-dependent inhibition of only TNFα-stimulated apoptosis. Moreover, the caspase-9 inhibitor, Ac-LEHD-cmk, had no effect on TNFα-induced apoptosis, and z-VAD-fmk and Boc-D-fmk inhibited TNFα-stimulated reactive oxygen species (ROS) generation. These data suggest that TNFα-induced apoptosis in neutrophils is fully caspase dependent and uses a mitochondrial-independent pathway and that the proapoptotic effects of z-VAD-fmk are compound specific and ROS independent.


2021 ◽  
Vol 128 (7) ◽  
pp. 993-1020
Author(s):  
Kathy K. Griendling ◽  
Livia L. Camargo ◽  
Francisco J. Rios ◽  
Rhéure Alves-Lopes ◽  
Augusto C. Montezano ◽  
...  

A link between oxidative stress and hypertension has been firmly established in multiple animal models of hypertension but remains elusive in humans. While initial studies focused on inactivation of nitric oxide by superoxide, our understanding of relevant reactive oxygen species (superoxide, hydrogen peroxide, and peroxynitrite) and how they modify complex signaling pathways to promote hypertension has expanded significantly. In this review, we summarize recent advances in delineating the primary and secondary sources of reactive oxygen species (nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, endoplasmic reticulum, and mitochondria), the posttranslational oxidative modifications they induce on protein targets important for redox signaling, their interplay with endogenous antioxidant systems, and the role of inflammasome activation and endoplasmic reticular stress in the development of hypertension. We highlight how oxidative stress in different organ systems contributes to hypertension, describe new animal models that have clarified the importance of specific proteins, and discuss clinical studies that shed light on how these processes and pathways are altered in human hypertension. Finally, we focus on the promise of redox proteomics and systems biology to help us fully understand the relationship between ROS and hypertension and their potential for designing and evaluating novel antihypertensive therapies.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4300-4300
Author(s):  
Serge Côté ◽  
Nathalie Dussault ◽  
Carl Simard

Abstract Hematopoietic cells mature in the bone marrow under the control of a diversity of growth factors and the influence of various cell types producing superoxide and other reactive oxygen species (ROS). As ROS may regulate activities of redox-sensitive enzymes implicated in a wide range of cellular processes, we have exposed the human megakaryocytic cell line M-07e to hydrogen peroxide (H2O2) at concentrations that increased intracellular ROS and examined whether expression of the megakaryocytic programme could be enhanced. The growth-factor dependent M-07e cells display surface markers characteristic of both early myeloid progenitors and more committed members of the magakaryocyte (Mk) lineage, such as glycoproteins GPIIb-IIIa (CD41) and GPIb (CD42). H2O2 significantly reduced cell proliferation without affecting viability. After 4 days of exposure to this reagent, expression of the early Mk marker CD41 was 1.2 times higher than that of control cells. Although no change in the expression of the late Mk marker CD42 was detected, exposure to H2O2 was found to increase the incidence of multinucleate cells, polyploidy and abnormal microtubule organising centre numbers. Investigation of this phenomenon on synchronized M-07e cells revealed that H2O2 arrested cytokinesis at a late stage and that some nuclei were still able to incorporate bromodeoxyuridine (BrdU). Cell division was similarly impaired when M-07e cells were either exposed to botulin toxin C3 transferase or Y-27362 inhibitor, suggesting that H2O2 treatments affected members of the Rho family of small GTP-binding proteins and/or their effectors. Together, these findings indicate that endoreplication in Mk may be linked to changes in the cellular redox state of these cells and support the concept that differentiation and polyploidization are independently regulated events.


2000 ◽  
Vol 26 (9) ◽  
pp. 875-883
Author(s):  
Taotao Wei ◽  
Chunyang Zhang ◽  
Jingwu Hou ◽  
Chang Chen ◽  
Hui Ma ◽  
...  

2009 ◽  
Vol 62 (11-12) ◽  
pp. 547-553 ◽  
Author(s):  
Tatjana Radosavljevic ◽  
Dusan Mladenovic ◽  
Danijela Vucevic

Introduction. Oxidative stress plays an important role in pathogenesis of alcoholic liver injury. The main source of free oxygen species is cytochrome P450-dependent monooxygenase, which can be induced by ethanol. Role of cytochrome P4502E1 in ethanol-induced oxidative stress. Reactive oxygen species produced by this enzyme are more important in intracellular oxidative damage compared to species derived from activated phagocytes. Free radicals lead to lipid peroxidation, enzymatic inactivation and protein oxidation. Role of mitochondria in alcohol-induced oxidative stress. Production of mitochondrial reactive oxygen species is increased, and glutathione content is decreased in chronically ethanolfed animals. Oxidative stress in mitochondria leads to mitochondrial DNA damage and has a dual effect on apoptosis. Role of Kupffer cells in alcohol-induced liver injury. Chronic ethanol consumption is associated with increased release of endotoxin from gut lumen into portal circulation. Endotoxin activates Kupffer cells, which then release proinflammatory cytokines and oxidants. Role of neutrophils in alcohol-induced liver injury. Alcoholic liver injury leads to the accumulation of neutrophils, which release reactive oxygen species and lysosomal enzymes and contribute to hepatocyte damage and necrosis. Role of nitric oxide in alcohol-induced oxidative stress. High amounts of nitric oxide contribute to the oxidative damage, mainly by generating peroxynitrites. Role of antioxidants in ethanol-induced oxidative stress. Chronic ethanol consumption is associated with reduced liver glutathione and ?-tocopherol level and with reduced superoxide dismutase, catalase and glutathione peroxidase activity. Conclusion. Oxidative stress in alcoholic liver disease is a consequence of increased production of oxidants and decreased antioxidant defense in the liver.


Sign in / Sign up

Export Citation Format

Share Document