Propagation of calcium waves along endothelium of hamster feed arteries

2007 ◽  
Vol 292 (3) ◽  
pp. H1634-H1640 ◽  
Author(s):  
Torben R. Uhrenholt ◽  
Timothy L. Domeier ◽  
Steven S. Segal

An increase in tissue blood flow requires relaxation of smooth muscle cells along entire branches of the resistance vasculature. Whereas the spread of hyperpolarization along the endothelium can coordinate smooth muscle cell relaxation, complementary signaling events have been implicated in the conduction of vasodilation. We tested the hypothesis that Ca2+ waves propagate from cell to cell along the endothelium of feed arteries exhibiting spontaneous vasomotor tone. Feed arteries of the hamster retractor muscle were isolated, pressurized to 75 mmHg at 37°C, and developed myogenic tone spontaneously. Smooth muscle cells and endothelial cells were loaded with the Ca2+ indicator Fluo-4. An acetylcholine stimulus was delivered locally using microiontophoresis (1-μm pipette tip, 1 μA, 1 s), and Ca2+ signaling within and along respective cell layers was determined using laser-scanning confocal microscopy. Acetylcholine triggered an increase in intracellular Ca2+ concentration ([Ca2+]i) of endothelial cells at the site of stimulation that preceded two distinct events: 1) a rapid synchronous decrease in smooth muscle [Ca2+]i along the entire vessel and 2) an ensuing Ca2+ wave that propagated bidirectionally along the endothelium at ∼111 μm/s for distances exceeding 1 mm. Maximal dilation of vessels with either nifedipine (1 μM) or sodium nitroprusside (SNP, 100 μM) reduced the distance that Ca2+ waves traveled to ∼300 μm ( P < 0.05). Thus Ca2+ waves propagate along the endothelium of resistance vessels with vasomotor tone, and this signaling pathway is compromised during maximal dilation with nifedipine or SNP.

2001 ◽  
Vol 280 (1) ◽  
pp. H160-H167 ◽  
Author(s):  
Geoffrey G. Emerson ◽  
Steven S. Segal

Endothelial cells are considered electrically unexcitable. However, endothelium-dependent vasodilators (e.g., acetylcholine) often evoke hyperpolarization. We hypothesized that electrical stimulation of endothelial cells could evoke hyperpolarization and vasodilation. Feed artery segments (resting diameter: 63 ± 1 μm; length 3–4 mm) of the hamster retractor muscle were isolated and pressurized to 75 mmHg, and focal stimulation was performed via microelectrodes positioned across one end of the vessel. Stimulation at 16 Hz (30–50 V, 1-ms pulses, 5 s) evoked constriction (−20 ± 2 μm) that spread along the entire vessel via perivascular sympathetic nerves, as shown by inhibition with tetrodotoxin, ω-conotoxin, or phentolamine. In contrast, stimulation with direct current (30 V, 5 s) evoked vasodilation (16 ± 2 μm) and hyperpolarization (11 ± 1 mV) of endothelial and smooth muscle cells that conducted along the entire vessel. Conducted responses were insensitive to preceding treatments, atropine, or N ω-nitro-l-arginine, yet were abolished by endothelial cell damage (with air). Injection of negative current (≤1.6 nA) into a single endothelial cell reproduced vasodilator responses along the entire vessel. We conclude that, independent of ligand-receptor interactions, endothelial cell hyperpolarization evokes vasodilation that is readily conducted along the vessel wall. Moreover, electrical events originating within a single endothelial cell can drive the relaxation of smooth muscle cells throughout the entire vessel.


2014 ◽  
Vol 306 (7) ◽  
pp. C659-C669 ◽  
Author(s):  
Krishna P. Subedi ◽  
Omkar Paudel ◽  
James S. K. Sham

Intracellular calcium (Ca2+) plays pivotal roles in distinct cellular functions through global and local signaling in various subcellular compartments, and subcellular Ca2+ signal is the key factor for independent regulation of different cellular functions. In vascular smooth muscle cells, subsarcolemmal Ca2+ is an important regulator of excitation-contraction coupling, and nucleoplasmic Ca2+ is crucial for excitation-transcription coupling. However, information on Ca2+ signals in these subcellular compartments is limited. To study the regulation of the subcellular Ca2+ signals, genetically encoded Ca2+ indicators (cameleon), D3cpv, targeting the plasma membrane (PM), cytoplasm, and nucleoplasm were transfected into rat pulmonary arterial smooth muscle cells (PASMCs) and Ca2+ signals were monitored using laser scanning confocal microscopy. In situ calibration showed that the Kd for Ca2+ of D3cpv was comparable in the cytoplasm and nucleoplasm, but it was slightly higher in the PM. Stimulation of digitonin-permeabilized cells with 1,4,5-trisphosphate (IP3) elicited a transient elevation of Ca2+ concentration with similar amplitude and kinetics in the nucleoplasm and cytoplasm. Activation of G protein-coupled receptors by endothelin-1 and angiotensin II preferentially elevated the subsarcolemmal Ca2+ signal with higher amplitude in the PM region than the nucleoplasm and cytoplasm. In contrast, the receptor tyrosine kinase activator, platelet-derived growth factor, elicited Ca2+ signals with similar amplitudes in all three regions, except that the rise-time and decay-time were slightly slower in the PM region. These data clearly revealed compartmentalization of Ca2+ signals in the subsarcolemmal regions and provide the basis for further investigations of differential regulation of subcellular Ca2+ signals in PASMCs.


2018 ◽  
Vol 33 (4) ◽  
pp. 416-425 ◽  
Author(s):  
Jia Yan ◽  
Kun Hu ◽  
YongHao Xiao ◽  
Fan Zhang ◽  
Lu Han ◽  
...  

A novel recombinant human-like collagen/fibroin scaffold has been prepared previously, which has high porosity, controllable pore size, and much better mechanical properties than the reported fibroin-based scaffold. In this research, the cell responses of vascular smooth muscle cells to this blend scaffold were examined in vitro. Cell morphology, adherence, and growth in scaffolds were observed by scanning electron microscopy, laser scanning confocal microscopy after staining of the cells with propidium iodide at 1, 3, 5, and 7 days, respectively. A wide range of measurements, including 3-[4,5–dimethylthiazol-2-yl]-2, 5-diphenyl tetrasodium bromide assay, and total intracellular protein content at the end of 7 days culture, were conducted. An increase of viability and protein content of vascular smooth muscle cells cultured in recombinant human-like collagen/fibroin scaffold was found. The laser scanning confocal microscopy and scanning electron microscopy results confirm that the cells readily adhered and proliferation in the blend than in fibroin scaffold, and indicate a better adhesion process. The positive effects were especially significant for vascular smooth muscle cells. The recombinant human-like collagen/fibroin scaffold could be a promising biomaterial for vascular tissue engineering.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 90.2-91
Author(s):  
C. G. Anchang ◽  
B. Matalobos Lawaree ◽  
S. Weber ◽  
S. Rauber ◽  
T. Wohlfahrt ◽  
...  

Background:Since vascular manifestations such as Raynaud’s phenomenon often precede the onset of other clinical manifestations of systemic sclerosis (SSc), the identification of pathways linking vasculopathy to organ fibrosis might thus provide important insights into early disease mechanisms and allow early targeted intervention for both fibrotic and vascular events.Objectives:In this study we performed high dimensional (HD) analyses to identify mediators that link vasculopathy to organ fibrosis.Methods:HD techniques including RNA-seq, ChIP-seq, ATAC-seq and FISH-seq have been performed to identify mediators in vessels and fibrotic lesions of human skin samples of SSc patients and healthy volunteers. In addition, murine skin and lung tissue samples were analyzed by multi-channel immunofluorescence (IF) and confocal laser scanning microscopy. Microvascular endothelial cells, smooth muscle cells and fibroblasts have been further processed to address their functional attributes with regard to their proliferative, migratory and chemotactic capacity. In vivo models and ex vivomouse fetal metatarsal assays were performed to study fibrotic and angiogenic processes.Results:Bioinformatic HD analyses revealed the ETS transcription factor PU.1 as molecular checkpoint of a network of factors that drive matrix production and fibrotic imprinting in SSc. Within this network ATF3 was significantly upregulated in fibroblasts of skin biopsies of SSc patients and of various organs of fibrosis models. ATF3 deficiency ameliorated fibrosis in various mouse models. Notably, ATF3 was significantly upregulated in vascular cells of fibrotic tissues of SSc patients. Multi-channel IF and confocal laser scanning microscopy of skin and lung biopsies of SSc patients revealed an increased expression of ATF3 especially in microvascular endothelial cells and smooth muscle cells. ATF3 overexpression in smooth muscle cells led to an extensively enhanced proliferation and increased migratory capacity whereas endothelial cells showed a SSc-like phenotype with reduced proliferation and migration. After ATF3 overexpression, tube formation capacity was completely altered as assessed by cumulative tube length, tube numbers and capillary sprouting. To investigate vessel outgrowth from a different perspective, we used theex vivofetal mouse metatarsal assay. ATF3 knockout mice showed a completely altered angiogenic response as assessed by tube length, number of branches and number junctions compared to wildtype controls.Conclusion:We identified PU.1 and ATF3 as key factors in disturbed vasculature and endogenous activated fibroblasts suggesting this axis as a potential therapeutic target intervening both fibrotic and vascular manifestations.Disclosure of Interests:Charles Gwellem Anchang: None declared, Bettina Matalobos Lawaree: None declared, Stefanie Weber: None declared, Simon Rauber: None declared, Thomas Wohlfahrt: None declared, Markus Luber: None declared, Alexander Kreuter: None declared, Georg Schett Speakers bureau: AbbVie, BMS, Celgene, Janssen, Eli Lilly, Novartis, Roche and UCB, Jörg Distler Grant/research support from: Boehringer Ingelheim, Consultant of: Boehringer Ingelheim, Paid instructor for: Boehringer Ingelheim, Speakers bureau: Boehringer Ingelheim, Andreas Ramming Grant/research support from: Pfizer, Novartis, Consultant of: Boehringer Ingelheim, Novartis, Gilead, Pfizer, Speakers bureau: Boehringer Ingelheim, Roche, Janssen


2018 ◽  
Vol 125 (6) ◽  
pp. 1851-1859 ◽  
Author(s):  
Matthew J. Socha ◽  
Steven S. Segal

Effective oxygen delivery to active muscle fibers requires that vasodilation initiated in distal arterioles, which control flow distribution and capillary perfusion, ascends the resistance network into proximal arterioles and feed arteries, which govern total blood flow into the muscle. With exercise onset, ascending vasodilation reflects initiation and conduction of hyperpolarization along endothelium from arterioles into feed arteries. Electrical coupling of endothelial cells to smooth muscle cells evokes the rapid component of ascending vasodilation, which is sustained by ensuing release of nitric oxide during elevated luminal shear stress. Concomitant sympathetic neural activation inhibits ascending vasodilation by stimulating α-adrenoreceptors on smooth muscle cells to constrict the resistance vasculature. We hypothesized that compromised muscle blood flow in advanced age reflects impaired ascending vasodilation through actions on both cell layers of the resistance network. In the gluteus maximus muscle of old (24 mo) vs. young (4 mo) male mice (corresponding to mid-60s vs. early 20s in humans) inhibition of α-adrenoreceptors in old mice restored ascending vasodilation, whereas even minimal activation of α-adrenoreceptors in young mice attenuated ascending vasodilation in the manner seen with aging. Conduction of hyperpolarization along the endothelium is impaired in old vs. young mice because of “leaky” membranes resulting from the activation of potassium channels by hydrogen peroxide released from endothelial cells. Exposing the endothelium of young mice to hydrogen peroxide recapitulates this effect of aging. Thus enhanced α-adrenoreceptor activation of smooth muscle in concert with electrically leaky endothelium restricts muscle blood flow by impairing ascending vasodilation in advanced age.


1994 ◽  
Vol 72 (01) ◽  
pp. 044-053 ◽  
Author(s):  
N Chomiki ◽  
M Henry ◽  
M C Alessi ◽  
F Anfosso ◽  
I Juhan-Vague

SummaryIndividuals with elevated levels of plasminogen activator inhibitor type 1 are at risk of developing atherosclerosis. The mechanisms leading to increased plasma PAI-1 concentrations are not well understood. The link observed between increased PAI-1 levels and insulin resistance has lead workers to investigate the effects of insulin or triglyceride rich lipoproteins on PAI-1 production by cultured hepatocytes or endothelial cells. However, little is known about the contribution of these cells to PAI-1 production in vivo. We have studied the expression of PAI-1 in human liver sections as well as in vessel walls from different territories, by immunocytochemistry and in situ hybridization.We have observed that normal liver endothelial cells expressed PAI-1 while parenchymal cells did not. However, this fact does not refute the role of parenchymal liver cells in pathological states.In healthy vessels, PAI-1 mRNA and protein were detected primarily at the endothelium from the lumen as well as from the vasa vasorum. In normal arteries, smooth muscle cells were able to produce PAI-1 depending on the territory tested. In deeply altered vessels, PAI-1 expression was observed in neovessels scattering the lesions, in some intimal cells and in smooth muscle cells. Local increase PAI-1 mRNA described in atherosclerotic lesions could be due to the abundant neovascularization present in the lesion as well as a raised expression in smooth muscle cells. The increased PAI-1 in atherosclerosis could lead to fibrin deposit during plaque rupture contributing further to the development and progression of the lesion.


1982 ◽  
Vol 48 (01) ◽  
pp. 101-103 ◽  
Author(s):  
B Kirchhof ◽  
J Grünwald

SummaryEndothelial and smooth muscle cells cultured from minipig aorta were examined for their inhibitory activity on thrombin and for their thrombin generating capacity.Endothelial cells showed both a thrombin inhibition and an activation of prothrombin in the presence of Ca++, which was enhanced in the presence of phospholipids. Smooth muscle cells showed an activation of prothrombin but at a lower rate. Both coagulation and amidolytic micro-assays were suitable for studying the thrombin-vessel wall interaction.


Sign in / Sign up

Export Citation Format

Share Document