Hemodynamic and biochemical adaptations to vascular smooth muscle overexpression of p22phox in mice

2005 ◽  
Vol 288 (1) ◽  
pp. H7-H12 ◽  
Author(s):  
Karine Laude ◽  
Hua Cai ◽  
Bruno Fink ◽  
Nyssa Hoch ◽  
David S. Weber ◽  
...  

Protein levels and polymorphisms of p22 phox have been suggested to modulate vascular NAD(P)H oxidase activity and vascular production of reactive oxygen species (ROS). We sought to determine whether increasing p22 phox expression would alter vascular ROS production and hemodynamics by targeting p22 phox expression to smooth muscle in transgenic (Tg) mice. Aortas of Tg p22smc mice had increased p22 phox and Nox1 protein levels and produced more superoxide and H2O2. Surprisingly, endothelium-dependent relaxation and blood pressure in Tg p22smc mice were normal. Aortas of Tg p22smc mice produced twofold more nitric oxide (NO) at baseline and sevenfold more NO in response to calcium ionophore as detected by electron spin resonance. Western blot analysis revealed a twofold increase in endothelial NO synthase (eNOS) protein expression in Tg p22smc mice. Both eNOS expression and NO production were normalized by infusion of the glutathione peroxidase mimetic ebselen or by crossing Tg p22smc mice with mice overexpressing catalase. We have previously found that NO stimulates extracellular superoxide dismutase (ecSOD) expression in vascular smooth muscle. In keeping with this, aortic segments from Tg p22smc mice expressed twofold more ecSOD, and chronic treatment with the NOS inhibitor NG-nitro-l-arginine methyl ester normalized this, suggesting that NO regulates ecSOD protein expression in vivo. These data indicate that chronic oxidative stress caused by excessive H2O2 production evokes a compensatory response involving increased eNOS expression and NO production. NO in turn increases ecSOD protein expression and counterbalances increased ROS production leading to the maintenance of normal vascular function and hemodynamics.

Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 890
Author(s):  
Keshav Raj Paudel ◽  
Dong-Wook Kim

Microparticles (MPs) are extracellular vesicles (0.1–1.0 μm in size), released in response to cell activation or apoptosis. Endothelial microparticles (EC-MP), vascular smooth muscle cell microparticles (VSMC-MP), and macrophage microparticles (MØ-MP) are key hallmarks of atherosclerosis progression. In our current study, we investigated the potent antioxidant activity of baicalin to ameliorate MP-induced vascular smooth muscle cell (VSMC) dysfunction and endothelial cell (EC) dysfunction, as well as the production of inflammatory mediators in macrophage (RAW264.7). In our study, baicalin suppressed the apoptosis, reactive oxygen species (ROS) generation, NO production, foam cell formation, protein expression of inducible nitric oxide synthase and cyclooxygenase-2 in MØ-MP-induced RAW264.7. In addition, VSMC migration induced by VSMC-MP was dose-dependently inhibited by baicalin. Likewise, baicalin inhibits metalloproteinase-9 expression and suppresses VSMC-MP-induced VSMC proliferation by down-regulation of mitogen-activated protein kinase and proliferating cell nuclear antigen protein expressions. Baicalin also inhibited ROS production and apoptosis in VSMC. In EC, the marker of endothelial dysfunction (endothelial senescence, upregulation of ICAM, and ROS production) induced by EC-MP was halted by baicalin. Our results suggested that baicalin exerts potent biological activity to restore the function of EC and VSMC altered by their corresponding microparticles and inhibits the release of inflammation markers from activated macrophages.


Perfusion ◽  
2000 ◽  
Vol 15 (2) ◽  
pp. 97-104 ◽  
Author(s):  
D Bradford Sanders ◽  
Tara Kelley ◽  
Douglas Larson

Vascular compliance is dependent on endogenous and exogenous sources of nitric oxide (NO). In a discussion of therapeutics and NO derived via nitric oxide synthase (NOS) enzymes, it is necessary to examine the pathways of each drug to provide the clinical perfusionist with a greater understanding of the role of NOS/NO in vascular function. Endothelial-derived NO is a contributor in the vasoregulation of vascular smooth muscle. Therapeutics seek to mimic the vasodilatory effects of the endogenous NO. The therapeutics included in this review are nitroglycerin, nitroprusside, amyl nitrite, and inhalation of NO. L-Arginine supplementation provides additional substrate for the endogenous pathway that can augment NO production. NO is a small bioactive molecule involved in various biochemical pathways. Dysregulation of NO production can impair normal physiologic control of vascular compliance. Therefore, the purpose of this review is to provide the perfusionist with an understanding of the biochemical and pharmacological aspects of NOS/NO associated with vascular function.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Brandon M Schickling ◽  
Maysam Takapoo ◽  
Eric J Devor ◽  
Francis J Miller

Vascular smooth muscle cell (SMC) de-differentiation with subsequent migration and proliferation into the subendothelial space is central to the progression of cardiovascular diseases. The Nox4 NADPH oxidase (Nox4) is implicated in maintaining the differentiated phenotype of SMC in part through myocardin, a master regulator of SMC gene expression. However, this process is poorly understood. We hypothesized that microRNAs (miR)-mediate changes in Nox4 expression and regulate SMC differentiation. Treatment of human SMCs with a miR-9 or miR-25 mimic silenced Nox4 mRNA through binding to the Nox4 3’UTR. However, only miR-25 was sufficient to downregulate Nox4 protein levels. We found that miR-25 induced the expression of miR-9 through a novel mechanism involving demethylation of the miR-9 promoter by Tet methylcytosine dioxygenase 2 (TET2). Inhibition of miR-9 induction by miR-25 with a miR-9 inhibitor restored Nox4 protein expression to basal levels. Furthermore, the miR-25-mediated decrease in Nox4 protein was ameliorated by inhibiting the proteasome with MG132. These data suggest a novel mechanism wherein miR-9 and miR-25 regulate Nox4 through both translational suppression and proteosomal degradation. Overexpression of miR-9 or miR-25 in human SMCs (1) suppressed myocardin mRNA and protein expression; (2) decreased expression of multiple SMC differentiation genes; and (3) was sufficient to induce cell migration. Thrombin and tumor necrosis factor increased the expression of miR-9 and miR-25 in human SMCs and inhibition of miR-9 prevented thrombin-mediated decrease in myocardin and SMC migration. Mir-9 and miR-25 levels were increased in SMCs derived from balloon injured rat aorta as compared to medial SMCs and in murine carotid artery ten days post carotid injury. A miR-9 inhibitor decreased neointimal formation by more than 50% in following partial carotid ligation in mice. These findings identify miR-9/Nox4 as a novel regulatory pathway of SMC differentiation and a potential therapeutic target in vascular disease.


Author(s):  
David A Ramirez ◽  
Weston Upchurch ◽  
Paul A Iaizzo

Abstract As electroporation therapies become more widely used in the cardiac ablation space, there is a critical need to study the potential effects on surrounding tissues: collateral damage. Here we explored methods to study the effects applying electroporative energies on vascular smooth muscle: i.e., loss of vascular function when exposed to energies needed to induce irreversibly electroporative therapy to the myocardium.


1992 ◽  
Vol 263 (4) ◽  
pp. H1090-H1094 ◽  
Author(s):  
T. Nagao ◽  
S. Illiano ◽  
P. M. Vanhoutte

Endothelium-dependent relaxations that are resistant to inhibitors of nitric oxide synthase probably are mediated by endothelium-dependent hyperpolarization of the vascular smooth muscle. Experiments were performed to examine the distribution of this type of relaxation along the arterial tree of the rat by measuring changes in isometric force. Acetylcholine induced concentration- and endothelium-dependent relaxations in aortas and in pulmonary, common iliac, femoral, mesenteric, and renal arteries contracted with phenylephrine. In the presence of NG-nitro-L-arginine, the cumulative administration of acetylcholine induced relaxations only in the femoral, mesenteric, and renal arteries. The calcium ionophore A23187 relaxed mesenteric arteries contracted with phenylephrine in a concentration- and endothelium-dependent manner. The concentration-relaxation curve to A23187 was shifted to the right in the presence of NG-nitro-L-arginine. The maximal relaxations induced by lemakalim, a K+ channel opener, were smaller in those arteries that did not exhibit NG-nitro-L-arginine-resistant relaxations. These results suggest that NG-nitro-L-arginine-resistant relaxations are more frequently observed in smaller arteries. The arteries that exhibit NG-nitro-L-arginine-resistant relaxations may be more sensitive to an endothelium-derived substance that causes hyperpolarization of vascular smooth muscle cells.


1997 ◽  
Vol 273 (2) ◽  
pp. H628-H633 ◽  
Author(s):  
J. W. Gu ◽  
T. H. Adair

We determined whether hypoxia-induced expression of vascular endothelial growth factor (VEGF) can be reversed by a normoxic environment. Dog myocardial vascular smooth muscle cells (MVSMCs) were exposed to hypoxia (1% O2) for 24 h and then returned to normoxia (20% O2). VEGF protein levels increased by more than fivefold after 24 h of hypoxia and returned to baseline within 24 h of the return of the cells to normoxia. Northern blot analysis showed that hypoxia caused a 5.5-fold increase in VEGF mRNA, and, again, the expression was reversed after reinstitution of normoxia. Additional measurements showed that basic fibroblast growth factor and platelet-derived growth factor protein levels were not induced by hypoxia and that hypoxia caused a fourfold decrease in transforming growth factor-beta 1 protein levels. Hypoxia conditioned media from MVSMCs caused human umbilical vein endothelial cells to increase [3H]thymidine incorporation by twofold, an effect that was blocked in a dose-dependent manner by anti-human VEGF antibody. The hypoxia conditioned media had no effect on MVSMC proliferation. These findings suggest that VEGF expression can be bidirectionally controlled by tissue oxygenation, and thus support the hypothesis that VEGF is a physiological regulator of angiogenesis.


1995 ◽  
Vol 269 (2) ◽  
pp. F212-F217 ◽  
Author(s):  
K. S. Lau ◽  
O. Nakashima ◽  
G. R. Aalund ◽  
L. Hogarth ◽  
K. Ujiie ◽  
...  

Cytokines increase the expression of the inducible (type II) nitric oxide synthase (NOS) in macrophages, liver, and renal epithelial cells. Previously, we found that cultured rat medullary interstitial cells (RMIC) contain high levels of soluble guanylyl cyclase. To determine whether these cells can also produce NO, we studied the effects of tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) on NO production, NOS II mRNA, and NOS II protein expression. Both TNF-alpha and IFN-gamma, in the presence of a low concentration of the other cytokine, caused dose-dependent increases in NO production. Exposure to TNF-alpha and IFN-gamma stimulated the production of NOS II mRNA, as determined by Northern blotting. Restriction mapping of reverse transcription-polymerase chain reaction products indicated that normal cells contained macrophage NOS II, whereas cytokine-stimulated cells contained primarily vascular smooth muscle NOS II and some macrophage NOS II. The appearance of NOS II protein was demonstrated by Western blotting. RMIC cell guanosine 3',5'-cyclic monophosphate accumulation increased 129-fold in response to the cytokines. NOS inhibitors decreased nitrite production. We conclude that 1) TNF-alpha and IFN-gamma induce the expression of vascular smooth muscle NOS II and production of NO in RMIC, and 2) NO acts as an autocrine activator of the soluble guanylyl cyclase in RMIC.


Sign in / Sign up

Export Citation Format

Share Document