scholarly journals SAP97 regulates Kir2.3 channels by multiple mechanisms

2009 ◽  
Vol 297 (4) ◽  
pp. H1387-H1397 ◽  
Author(s):  
Karen L. Vikstrom ◽  
Ravi Vaidyanathan ◽  
Susan Levinsohn ◽  
Ryan P. O'Connell ◽  
Yueming Qian ◽  
...  

We examined the impact of coexpressing the inwardly rectifying potassium channel, Kir2.3, with the scaffolding protein, synapse-associated protein (SAP) 97, and determined that coexpression of these proteins caused an approximately twofold increase in current density. A combination of techniques was used to determine if the SAP97-induced increase in Kir2.3 whole cell currents resulted from changes in the number of channels in the cell membrane, unitary channel conductance, or channel open probability. In the absence of SAP97, Kir2.3 was found predominantly in a cytoplasmic, vesicular compartment with relatively little Kir2.3 localized to the plasma membrane. The introduction of SAP97 caused a redistribution of Kir2.3, leading to prominent colocalization of Kir2.3 and SAP97 and a modest increase in cell surface Kir2.3. The median Kir2.3 single channel conductance in the absence of SAP97 was ∼13 pS, whereas coexpression of SAP97 led to a wide distribution of channel events with three distinct peaks centered at 16, 29, and 42 pS. These changes occurred without altering channel open probability, current rectification properties, or pH sensitivity. Thus association of Kir2.3 with SAP97 in HEK293 cells increased channel cell surface expression and unitary channel conductance. However, changes in single channel conductance play the major role in determining whole cell currents in this model system. We further suggest that the SAP97 effect results from SAP97 binding to the Kir2.3 COOH-terminal domain and altering channel conformation.

2021 ◽  
Vol 22 (23) ◽  
pp. 12621
Author(s):  
Agnieszka Siemieniuk ◽  
Zbigniew Burdach ◽  
Waldemar Karcz

Little is known about the effect of lead on the activity of the vacuolar K+ channels. Here, the patch-clamp technique was used to compare the impact of lead (PbCl2) on the slow-activating (SV) and fast-activating (FV) vacuolar channels. It was revealed that, under symmetrical 100-mM K+, the macroscopic currents of the SV channels exhibited a typical slow activation and a strong outward rectification of the steady-state currents, while the macroscopic currents of the FV channels displayed instantaneous currents, which, at the positive potentials, were about three-fold greater compared to the one at the negative potentials. When PbCl2 was added to the bath solution at a final concentration of 100 µM, it decreased the macroscopic outward currents of both channels but did not change the inward currents. The single-channel recordings demonstrated that cytosolic lead causes this macroscopic effect by a decrease of the single-channel conductance and decreases the channel open probability. We propose that cytosolic lead reduces the current flowing through the SV and FV channels, which causes a decrease of the K+ fluxes from the cytosol to the vacuole. This finding may, at least in part, explain the mechanism by which cytosolic Pb2+ reduces the growth of plant cells.


1992 ◽  
Vol 262 (1) ◽  
pp. C84-C90 ◽  
Author(s):  
M. Mukai ◽  
I. Kyogoku ◽  
M. Kuno

Antigenic stimulation of rat basophilic leukemia (RBL-2H3) cells, a tumor mast cell line, is associated with an increase in intracellular free Ca2+ concentrations ([Ca2+]i) and membrane polarization. We recorded whole cell and single-channel currents through the inwardly rectifying K+ channel, a major resting conductance of cells, using the patch-clamp technique, and we examined interactions between channel activity and [Ca2+]i. With 10 microM Ca2+ in the pipette, the amplitude of whole cell currents gradually declined within 5 min to 48 +/- 13% of that immediately after rupture of the patch membrane, in the presence of 1 mM ATP which minimized intrinsic rundown. In inside-out patches, activity of the channel was reduced by increasing the concentration of Ca2+ in the internal medium, both in the presence and absence of 1 mM ATP, with no apparent change in single-channel conductance. Time-averaged mean current activity in inside-out patches in the presence of 5 microM Ca2+ was less than 50% of that with Ca2+ of 100 nM or less. These results suggest that a rise in [Ca2+]i leads to a closure of the inwardly rectifying K+ channel. In some inside-out patches, inward currents characterized by burst composed of rapid transitions between open and closed states were observed (flickering currents). Single-channel properties of the flickering currents are similar to the inwardly rectifying K+ channel except for kinetics (single-channel conductance of 24.5 +/- 7.9 pS, inward rectification, and permeability to K+).(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 273 (4) ◽  
pp. F516-F529 ◽  
Author(s):  
Han Choe ◽  
Hao Zhou ◽  
Lawrence G. Palmer ◽  
Henry Sackin

ROMK channels play a key role in overall K balance by controlling K secretion across the apical membrane of mammalian cortical collecting tubule. In contrast to the family of strong inward rectifiers (IRKs), ROMK channels are markedly sensitive to intracellular pH. Using Xenopus oocytes, we have confirmed this pH sensitivity at both the single-channel and whole cell level. Reduction of oocyte pH from 6.8 to 6.4 (using a permeant acetate buffer) reduced channel open probability from 0.76 ± 0.02 to near zero ( n = 8), without altering single-channel conductance. This was due to the appearance of a long-lived closed state at low internal pH. We have confirmed that a lysine residue (K61 on ROMK2; K80 on ROMK1), NH2 terminal to the first putative transmembrane segment (M1), is primarily responsible for conferring a steep pH sensitivity to ROMK (B. Fakler, J. Schultz, J. Yang, U. Schulte, U. Bråandle, H. P. Zenner, L. Y. Jan, and J. P. Ruppersberg. EMBO J. 15: 4093–4099, 1996). However, the apparent p K a of ROMK also depends on another residue in a highly conserved, mildly hydrophobic area: T51 on ROMK2 (T70 on ROMK1). Replacing this neutral threonine (T51) with a negatively charged glutamate shifted the apparent p K a for inward conductance from 6.5 ± 0.01 ( n = 8, wild type) to 7.0 ± 0.02 ( n = 5, T51E). On the other hand, replacing T51 with a positively charged lysine shifted the apparent p K a in the opposite direction, from 6.5 ± 0.01 ( n = 8, wild type) to 6.0 ± 0.02 ( n = 9, T51K). The opposite effects of the glutamate and lysine substitutions at position 51 (ROMK2) are consistent with a model in which T51 is physically close to K61 and alters either the local pH or the apparent p K a via an electrostatic mechanism. In addition to its effects on pH sensitivity, the mutation T51E also decreased single-channel conductance from 34.0 ± 1.0 pS ( n = 8, wild type) to 17.4 ± 1 pS ( n = 9, T51E), reversed the voltage gating of the channel, and significantly increased open-channel noise. These effects on single-channel currents suggest that the T51 residue, located in a mildly hydrophobic area of ROMK2, also interacts with the hydrophobic region of the permeation pathway.


2001 ◽  
Vol 280 (5) ◽  
pp. C1130-C1139 ◽  
Author(s):  
Jichang Li ◽  
Ana M. Correa

Volatile anesthetics modulate the function of various K+ channels. We previously reported that isoflurane induces an increase in macroscopic currents and a slowing down of current deactivation of Shaker H4 IR K+ channels. To understand the single-channel basis of these effects, we performed nonstationary noise analysis of macroscopic currents and analysis of single channels in patches from Xenopus oocytes expressing Shaker H4 IR. Isoflurane (1.2% and 2.5%) induced concentration-dependent, partially reversible increases in macroscopic currents and in the time course of tail currents. Noise analysis of currents (70 mV) revealed an increase in unitary current (∼17%) and maximum open probability (∼20%). Single-channel conductance was larger (∼20%), and opening events were more stable, in isoflurane. Tail-current slow time constants increased by 41% and 136% in 1.2% and 2.5% isoflurane, respectively. Our results show that, in a manner consistent with stabilization of the open state, isoflurane increased the macroscopic conductance of Shaker H4 IR K+ channels by increasing the single-channel conductance and the open probability.


1995 ◽  
Vol 105 (2) ◽  
pp. 227-247 ◽  
Author(s):  
R T Dirksen ◽  
K G Beam

The purpose of this study was to use whole-cell and cell-attached patches of cultured skeletal muscle myotubes to study the macroscopic and unitary behavior of voltage-dependent calcium channels under similar conditions. With 110 mM BaCl2 as the charge carrier, two types of calcium channels with markedly different single-channel and macroscopic properties were found. One class was DHP-insensitive, had a single-channel conductance of approximately 9 pS, yielded ensembles that displayed an activation threshold near -40 mV, and activated and inactivated rapidly in a voltage-dependent manner (T current). The second class could only be well resolved in the presence of the DHP agonist Bay K 8644 (5 microM) and had a single-channel conductance of approximately 14 pS (L current). The 14-pS channel produced ensembles exhibiting a threshold of approximately -10 mV that activated slowly (tau act approximately 20 ms) and displayed little inactivation. Moreover, the DHP antagonist, (+)-PN 200-110 (10 microM), greatly increased the percentage of null sweeps seen with the 14-pS channel. The open probability versus voltage relationship of the 14-pS channel was fitted by a Boltzmann distribution with a VP0.5 = 6.2 mV and kp = 5.3 mV. L current recorded from whole-cell experiments in the presence of 110 mM BaCl2 + 5 microM Bay K 8644 displayed similar time- and voltage-dependent properties as ensembles of the 14-pS channel. Thus, these data are the first comparison under similar conditions of the single-channel and macroscopic properties of T current and L current in native skeletal muscle, and identify the 9- and 14-pS channels as the single-channel correlates of T current and L current, respectively.


1994 ◽  
Vol 266 (4) ◽  
pp. C1061-C1068 ◽  
Author(s):  
T. C. Chinet ◽  
J. M. Fullton ◽  
J. R. Yankaskas ◽  
R. C. Boucher ◽  
M. J. Stutts

Transepithelial Na+ absorption is increased two to three times in cystic fibrosis (CF) compared with normal (NL) airway epithelia. This increase has been associated with a higher Na+ permeability of the apical membrane of airway epithelial cells. Because Na+ absorption is electrogenic and abolished by amiloride, Na+ channels are thought to dominate the apical membrane Na+ permeability. Three Na+ channel-related mechanisms may explain the increase in apical Na+ permeability in CF cells: increased number of channels, increased single-channel conductance, and increased single-channel open probability. We compared the properties of Na(+)-permeable channels in the apical membrane of confluent preparations of human NL and CF nasal epithelial cells cultured on permeable supports. Na(+)-permeable channels were studied using the patch-clamp technique in the excised inside-out and cell-attached configurations. The same types of Na(+)-permeable channels were recorded in CF and NL cells. In excised patches, nonselective (Na+/K+) cation channels were recorded, and no differences between CF and NL were found in the properties, incidence, single-channel conductance, and single-channel open probability. In cell-attached patches, channels with a higher Na+ vs. K+ selectivity dominated. There was no difference between CF and NL cells in the incidence (18.8 vs. 21.4%, respectively) and conductance (17.2 +/- 2.8 vs. 21.4 +/- 1.5 pS, respectively) of Na(+)-permeable channels. However, the open probability was higher in CF cells compared with NL cells (30.0 +/- 3.4%, n = 6, vs. 15.0 +/- 3.9%, n = 13; P < 0.05). We conclude that, in CF nasal epithelial cells, the increase in Na+ permeability of the apical membrane results from an increase in the open probability of Na(+)-permeable channels in the apical membrane.


1992 ◽  
Vol 263 (3) ◽  
pp. F392-F400 ◽  
Author(s):  
Y. Marunaka ◽  
N. Hagiwara ◽  
H. Tohda

Using the patch-clamp technique, we studied the effect of insulin on an amiloride-blockable Na channel in the apical membrane of a distal nephron cell line (A6) cultured on permeable collagen films for 10-14 days. NPo (N, number of channels per patch membrane; Po, average value of open probability of individual channels in the patch) under baseline conditions was 0.88 +/- 0.12 (SE)(n = 17). After making cell-attached patches on the apical membrane which contained Na channels, insulin (1 mU/ml) was applied to the serosal bath. While maintaining the cell-attached patch, NPo significantly increased to 1.48 +/- 0.19 (n = 17; P less than 0.001) after 5-10 min of insulin application. The open probability of Na channels was 0.39 +/- 0.01 (n = 38) under baseline condition, and increased to 0.66 +/- 0.03 (n = 38, P less than 0.001) after addition of insulin. The baseline single-channel conductance was 4pS, and neither the single-channel conductance nor the current-voltage relationship was significantly changed by insulin. These results indicate that insulin increases Na absorption in the distal nephron by increasing the open probability of the amiloride-blockable Na channel.


2000 ◽  
Vol 17 (2) ◽  
pp. 197-206 ◽  
Author(s):  
WALLACE B. THORESON ◽  
RON NITZAN ◽  
ROBERT F. MILLER

The present study uses cell-attached patch-recording techniques to study the single-channel properties of Ca2+ channels in isolated salamander photoreceptors and investigate their sensitivity to reductions in intracellular Cl−. The results show that photoreceptor Ca2+ channels possess properties similar to L-type Ca2+ channels in other preparations, including (1) enhancement of openings by the dihydropyridine agonist, (−)BayK8644; (2) suppression by a dihydropyridine antagonist, nisoldipine; (3) single-channel conductance of 22 pS with 82 mM Ba2+ as the charge carrier; (4) mean open probability of 0.1; (5) open-time distribution fit with a single exponential (τ0 = 1.1 ms) consistent with a single open state; and (6) closed time distribution fit with two exponentials (τc1 = 0.7 ms, τc2 = 25.4 ms) consistent with at least two closed states. Using a Cl−-sensitive dye to measure intracellular [Cl−], it was found that perfusion with gluconate-containing, low Cl− medium depleted intracellular [Cl−]. It was therefore possible to reduce intracellular [Cl−] by perfusion with a low Cl− solution while maintaining the extracellular channel surface in high Cl− pipette solution. Under these conditions, the single-channel conductance was unchanged, but the mean open probability fell to 0.03. This reduction can account for the 66% reduction in whole-cell Ca2+ currents produced by perfusion with low Cl− solutions. Examination of the open and closed time distributions suggests that the reduction in open probability arises from increases in closed-state dwell times. Changes in intracellular [Cl−] may thus modulate photoreceptor Ca2+ channels.


Sign in / Sign up

Export Citation Format

Share Document