Single-channel basis for conductance increase induced by isoflurane in Shaker H4 IR K+ channels

2001 ◽  
Vol 280 (5) ◽  
pp. C1130-C1139 ◽  
Author(s):  
Jichang Li ◽  
Ana M. Correa

Volatile anesthetics modulate the function of various K+ channels. We previously reported that isoflurane induces an increase in macroscopic currents and a slowing down of current deactivation of Shaker H4 IR K+ channels. To understand the single-channel basis of these effects, we performed nonstationary noise analysis of macroscopic currents and analysis of single channels in patches from Xenopus oocytes expressing Shaker H4 IR. Isoflurane (1.2% and 2.5%) induced concentration-dependent, partially reversible increases in macroscopic currents and in the time course of tail currents. Noise analysis of currents (70 mV) revealed an increase in unitary current (∼17%) and maximum open probability (∼20%). Single-channel conductance was larger (∼20%), and opening events were more stable, in isoflurane. Tail-current slow time constants increased by 41% and 136% in 1.2% and 2.5% isoflurane, respectively. Our results show that, in a manner consistent with stabilization of the open state, isoflurane increased the macroscopic conductance of Shaker H4 IR K+ channels by increasing the single-channel conductance and the open probability.

2000 ◽  
Vol 84 (5) ◽  
pp. 2409-2416 ◽  
Author(s):  
Erika D. Eggers ◽  
Jennifer A. O'Brien ◽  
Albert J. Berger

During postnatal motoneuron development, the glycine receptor (GlyR) α subunit changes from α2 (fetal) to α1 (adult). To study the effect this change has on ethanol potentiation of GlyR currents in hypoglossal motoneurons (HMs), we placed neurons into two groups: neonate [ postnatal day 1 to 3( P1–3)], primarily expressing α2, and juvenile ( P9–13), primarily expressing α1. We found that glycinergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) in neonate HMs are less sensitive to ethanol than in juveniles. Thirty millimolar ethanol increased the amplitude of juvenile mIPSCs but did not significantly change neonatal mIPSCs. However, 100 mM ethanol increased the amplitudes of both neonate and juvenile mIPSCs. There was a significant difference between age groups in the average ethanol-induced increase in mIPSC amplitude for 10, 30, 50, and 100 mM ethanol. In both age groups ethanol increased the frequency of glycinergic mIPSCs, but there was no difference in the amount of frequency increase between age groups. Ethanol (100 mM) also potentiated evoked IPSCs (eIPSCs) in both neonate and juvenile HMs. As we observed for mIPSCs, 30 mM ethanol increased the amplitude of juvenile eIPSCs, but had no significant effect on eIPSCs in neonate HMs. Ethanol also potentiated currents induced by exogenously applied glycine in both neonate and juvenile HMs. These results suggest that ethanol directly modulates the GlyR. To investigate possible mechanisms for this, we analyzed the time course of mIPSCs and single-channel conductance of the GlyR in the presence and absence of ethanol. We found that ethanol did not significantly change the time course of mIPSCs. We also determined that ethanol did not significantly change the single-channel conductance of synaptic GlyRs, as estimated by nonstationary noise analysis of mIPSCs. We conclude that the adult form of the native GlyR is more sensitive to ethanol than the fetal form. Further, enhancement of GlyR currents involves mechanisms other than an increase in the single-channel conductance or factors that alter the decay kinetics.


1997 ◽  
Vol 273 (4) ◽  
pp. F516-F529 ◽  
Author(s):  
Han Choe ◽  
Hao Zhou ◽  
Lawrence G. Palmer ◽  
Henry Sackin

ROMK channels play a key role in overall K balance by controlling K secretion across the apical membrane of mammalian cortical collecting tubule. In contrast to the family of strong inward rectifiers (IRKs), ROMK channels are markedly sensitive to intracellular pH. Using Xenopus oocytes, we have confirmed this pH sensitivity at both the single-channel and whole cell level. Reduction of oocyte pH from 6.8 to 6.4 (using a permeant acetate buffer) reduced channel open probability from 0.76 ± 0.02 to near zero ( n = 8), without altering single-channel conductance. This was due to the appearance of a long-lived closed state at low internal pH. We have confirmed that a lysine residue (K61 on ROMK2; K80 on ROMK1), NH2 terminal to the first putative transmembrane segment (M1), is primarily responsible for conferring a steep pH sensitivity to ROMK (B. Fakler, J. Schultz, J. Yang, U. Schulte, U. Bråandle, H. P. Zenner, L. Y. Jan, and J. P. Ruppersberg. EMBO J. 15: 4093–4099, 1996). However, the apparent p K a of ROMK also depends on another residue in a highly conserved, mildly hydrophobic area: T51 on ROMK2 (T70 on ROMK1). Replacing this neutral threonine (T51) with a negatively charged glutamate shifted the apparent p K a for inward conductance from 6.5 ± 0.01 ( n = 8, wild type) to 7.0 ± 0.02 ( n = 5, T51E). On the other hand, replacing T51 with a positively charged lysine shifted the apparent p K a in the opposite direction, from 6.5 ± 0.01 ( n = 8, wild type) to 6.0 ± 0.02 ( n = 9, T51K). The opposite effects of the glutamate and lysine substitutions at position 51 (ROMK2) are consistent with a model in which T51 is physically close to K61 and alters either the local pH or the apparent p K a via an electrostatic mechanism. In addition to its effects on pH sensitivity, the mutation T51E also decreased single-channel conductance from 34.0 ± 1.0 pS ( n = 8, wild type) to 17.4 ± 1 pS ( n = 9, T51E), reversed the voltage gating of the channel, and significantly increased open-channel noise. These effects on single-channel currents suggest that the T51 residue, located in a mildly hydrophobic area of ROMK2, also interacts with the hydrophobic region of the permeation pathway.


1994 ◽  
Vol 266 (4) ◽  
pp. C1061-C1068 ◽  
Author(s):  
T. C. Chinet ◽  
J. M. Fullton ◽  
J. R. Yankaskas ◽  
R. C. Boucher ◽  
M. J. Stutts

Transepithelial Na+ absorption is increased two to three times in cystic fibrosis (CF) compared with normal (NL) airway epithelia. This increase has been associated with a higher Na+ permeability of the apical membrane of airway epithelial cells. Because Na+ absorption is electrogenic and abolished by amiloride, Na+ channels are thought to dominate the apical membrane Na+ permeability. Three Na+ channel-related mechanisms may explain the increase in apical Na+ permeability in CF cells: increased number of channels, increased single-channel conductance, and increased single-channel open probability. We compared the properties of Na(+)-permeable channels in the apical membrane of confluent preparations of human NL and CF nasal epithelial cells cultured on permeable supports. Na(+)-permeable channels were studied using the patch-clamp technique in the excised inside-out and cell-attached configurations. The same types of Na(+)-permeable channels were recorded in CF and NL cells. In excised patches, nonselective (Na+/K+) cation channels were recorded, and no differences between CF and NL were found in the properties, incidence, single-channel conductance, and single-channel open probability. In cell-attached patches, channels with a higher Na+ vs. K+ selectivity dominated. There was no difference between CF and NL cells in the incidence (18.8 vs. 21.4%, respectively) and conductance (17.2 +/- 2.8 vs. 21.4 +/- 1.5 pS, respectively) of Na(+)-permeable channels. However, the open probability was higher in CF cells compared with NL cells (30.0 +/- 3.4%, n = 6, vs. 15.0 +/- 3.9%, n = 13; P < 0.05). We conclude that, in CF nasal epithelial cells, the increase in Na+ permeability of the apical membrane results from an increase in the open probability of Na(+)-permeable channels in the apical membrane.


2021 ◽  
Vol 22 (23) ◽  
pp. 12621
Author(s):  
Agnieszka Siemieniuk ◽  
Zbigniew Burdach ◽  
Waldemar Karcz

Little is known about the effect of lead on the activity of the vacuolar K+ channels. Here, the patch-clamp technique was used to compare the impact of lead (PbCl2) on the slow-activating (SV) and fast-activating (FV) vacuolar channels. It was revealed that, under symmetrical 100-mM K+, the macroscopic currents of the SV channels exhibited a typical slow activation and a strong outward rectification of the steady-state currents, while the macroscopic currents of the FV channels displayed instantaneous currents, which, at the positive potentials, were about three-fold greater compared to the one at the negative potentials. When PbCl2 was added to the bath solution at a final concentration of 100 µM, it decreased the macroscopic outward currents of both channels but did not change the inward currents. The single-channel recordings demonstrated that cytosolic lead causes this macroscopic effect by a decrease of the single-channel conductance and decreases the channel open probability. We propose that cytosolic lead reduces the current flowing through the SV and FV channels, which causes a decrease of the K+ fluxes from the cytosol to the vacuole. This finding may, at least in part, explain the mechanism by which cytosolic Pb2+ reduces the growth of plant cells.


1992 ◽  
Vol 263 (3) ◽  
pp. F392-F400 ◽  
Author(s):  
Y. Marunaka ◽  
N. Hagiwara ◽  
H. Tohda

Using the patch-clamp technique, we studied the effect of insulin on an amiloride-blockable Na channel in the apical membrane of a distal nephron cell line (A6) cultured on permeable collagen films for 10-14 days. NPo (N, number of channels per patch membrane; Po, average value of open probability of individual channels in the patch) under baseline conditions was 0.88 +/- 0.12 (SE)(n = 17). After making cell-attached patches on the apical membrane which contained Na channels, insulin (1 mU/ml) was applied to the serosal bath. While maintaining the cell-attached patch, NPo significantly increased to 1.48 +/- 0.19 (n = 17; P less than 0.001) after 5-10 min of insulin application. The open probability of Na channels was 0.39 +/- 0.01 (n = 38) under baseline condition, and increased to 0.66 +/- 0.03 (n = 38, P less than 0.001) after addition of insulin. The baseline single-channel conductance was 4pS, and neither the single-channel conductance nor the current-voltage relationship was significantly changed by insulin. These results indicate that insulin increases Na absorption in the distal nephron by increasing the open probability of the amiloride-blockable Na channel.


2009 ◽  
Vol 297 (4) ◽  
pp. H1387-H1397 ◽  
Author(s):  
Karen L. Vikstrom ◽  
Ravi Vaidyanathan ◽  
Susan Levinsohn ◽  
Ryan P. O'Connell ◽  
Yueming Qian ◽  
...  

We examined the impact of coexpressing the inwardly rectifying potassium channel, Kir2.3, with the scaffolding protein, synapse-associated protein (SAP) 97, and determined that coexpression of these proteins caused an approximately twofold increase in current density. A combination of techniques was used to determine if the SAP97-induced increase in Kir2.3 whole cell currents resulted from changes in the number of channels in the cell membrane, unitary channel conductance, or channel open probability. In the absence of SAP97, Kir2.3 was found predominantly in a cytoplasmic, vesicular compartment with relatively little Kir2.3 localized to the plasma membrane. The introduction of SAP97 caused a redistribution of Kir2.3, leading to prominent colocalization of Kir2.3 and SAP97 and a modest increase in cell surface Kir2.3. The median Kir2.3 single channel conductance in the absence of SAP97 was ∼13 pS, whereas coexpression of SAP97 led to a wide distribution of channel events with three distinct peaks centered at 16, 29, and 42 pS. These changes occurred without altering channel open probability, current rectification properties, or pH sensitivity. Thus association of Kir2.3 with SAP97 in HEK293 cells increased channel cell surface expression and unitary channel conductance. However, changes in single channel conductance play the major role in determining whole cell currents in this model system. We further suggest that the SAP97 effect results from SAP97 binding to the Kir2.3 COOH-terminal domain and altering channel conformation.


2000 ◽  
Vol 17 (2) ◽  
pp. 197-206 ◽  
Author(s):  
WALLACE B. THORESON ◽  
RON NITZAN ◽  
ROBERT F. MILLER

The present study uses cell-attached patch-recording techniques to study the single-channel properties of Ca2+ channels in isolated salamander photoreceptors and investigate their sensitivity to reductions in intracellular Cl−. The results show that photoreceptor Ca2+ channels possess properties similar to L-type Ca2+ channels in other preparations, including (1) enhancement of openings by the dihydropyridine agonist, (−)BayK8644; (2) suppression by a dihydropyridine antagonist, nisoldipine; (3) single-channel conductance of 22 pS with 82 mM Ba2+ as the charge carrier; (4) mean open probability of 0.1; (5) open-time distribution fit with a single exponential (τ0 = 1.1 ms) consistent with a single open state; and (6) closed time distribution fit with two exponentials (τc1 = 0.7 ms, τc2 = 25.4 ms) consistent with at least two closed states. Using a Cl−-sensitive dye to measure intracellular [Cl−], it was found that perfusion with gluconate-containing, low Cl− medium depleted intracellular [Cl−]. It was therefore possible to reduce intracellular [Cl−] by perfusion with a low Cl− solution while maintaining the extracellular channel surface in high Cl− pipette solution. Under these conditions, the single-channel conductance was unchanged, but the mean open probability fell to 0.03. This reduction can account for the 66% reduction in whole-cell Ca2+ currents produced by perfusion with low Cl− solutions. Examination of the open and closed time distributions suggests that the reduction in open probability arises from increases in closed-state dwell times. Changes in intracellular [Cl−] may thus modulate photoreceptor Ca2+ channels.


1983 ◽  
Vol 81 (4) ◽  
pp. 547-569 ◽  
Author(s):  
C Lingle ◽  
A Auerbach

The properties of acetylcholine-activated excitatory currents on the gm1 muscle of three marine decapod crustaceans, the spiny lobsters Panulirus argus and interruptus, and the crab Cancer borealis, were examined using either noise analysis, analysis of synaptic current decays, or analysis of the voltage dependence of ionophoretically activated cholinergic conductance increases. The apparent mean channel open time (tau n) obtained from noise analysis at -80 mV and 12 degrees C was approximately 13 ms; tau n was prolonged e-fold for about every 100-mV hyperpolarization in membrane potential; tau n was prolonged e-fold for every 10 degrees C decrease in temperature. Gamma, the single-channel conductance, at 12 degrees C was approximately 18 pS and was not affected by voltage; gamma was increased approximately 2.5-fold for every 10 degrees C increase in temperature. Synaptic currents decayed with a single exponential time course, and at -80 mV and 12 degrees C, the time constant of decay of synaptic currents, tau ejc, was approximately 14-15 ms and was prolonged e-fold about every 140-mV hyperpolarization; tau ejc was prolonged about e-fold for every 10 degrees C decrease in temperature. The voltage dependence of the amplitude of steady-state cholinergic currents suggests that the total conductance increase produced by cholinergic agonists is increased with hyperpolarization. Compared with glutamate channels found on similar decapod muscles (see the following article), the acetylcholine channels stay open longer, conduct ions more slowly, and are more sensitive to changes in the membrane potential.


1994 ◽  
Vol 266 (5) ◽  
pp. C1182-C1189 ◽  
Author(s):  
S. C. Sansom ◽  
J. D. Stockand

The planar bilayer method was used to characterize the properties of large Ca(2+)-activated K+ [BK(Ca)] channels of smooth muscle from bovine mesenteric arteries. We found two isochannels of BK(Ca), differing in sensitivity to Ca2+ on the intracellular side of the channel. The first isochannel, Kc1, had a single-channel conductance of 287 +/- 8 pS and required a potential of -33 mV to activate to an open probability (Po) of 0.5 with 1 microM Ca2+. The single-channel conductance of the second isochannel, Kc2 (282 +/- 8 pS), was not statistically different from that of Kc1 but required a potential of 41 mV to activate to a Po of 0.5 with 1.0 microM Ca2+. At a channel voltage of 0 mV, the Ca2+ concentrations for activating Po to 0.5 were 0.2 and 10 microM for Kc1 and Kc2, respectively. The equivalent gating charges, estimated from the Boltzmann equation, were 2.4 and 2.2 for Kc1 and Kc2, respectively. The K/Cl selectivity of Kc1 was > 40 and not significantly different from Kc2. The Po of either isochannel did not change when protein kinase A or alkaline phosphatase was added to the intracellular side. We conclude that bovine mesenteric arteries contain two distinct isochannels of BK(Ca) that differ in Ca2+ sensitivity but are identical with respect to single-channel conductance, equivalent gating charge, and K+/Cl- selectivities.


Sign in / Sign up

Export Citation Format

Share Document