Blood pressure regulates the activity and function of the Na-K-2Cl cotransporter in vascular smooth muscle

2004 ◽  
Vol 286 (4) ◽  
pp. H1552-H1557 ◽  
Author(s):  
Gengru Jiang ◽  
Fatma Akar ◽  
Scott L. Cobbs ◽  
Koba Lomashvilli ◽  
Randala Lakkis ◽  
...  

The Na-K-2Cl cotransporter (NKCC1) is one of several transporters that have been linked to hypertension, and its inhibition reduces vascular smooth muscle tone and blood pressure. NKCC1 in the rat aorta is stimulated by vasoconstrictors and inhibited by nitrovasodilators, and this is linked to the contractile state of the smooth muscle. To determine whether blood pressure also regulates NKCC1, we examined the acute effect of hypertension on NKCC1 in rats after aortic coarctation. In the hypertensive aorta (28-mmHg rise in mean blood pressure), an increase in NKCC1 activity (measured as bumetanide-sensitive 86Rb efflux) was apparent by 16 h and reached a plateau of 62% greater than control at 48 h. In contrast, there was a slight decrease in NKCC1 activity in the hypotensive aorta (21% decrease in mean blood pressure). Measurement of NKCC1 mRNA by real-time PCR revealed a fivefold increase in the hypertensive aorta compared with the hypotensive aorta or sham aorta. The inhibition by bumetanide of isometric force response to phenylephrine was significantly greater in the hypertensive aorta than in the control aorta or hypotensive aorta. We conclude that NKCC1 in rat aortic smooth muscle is regulated by blood pressure, most likely through changes in transporter abundance. This upregulation of NKCC1 is associated with a greater contribution to force generation in the hypertensive aorta. This is the first demonstration that NKCC1 in vascular smooth muscle is regulated by blood pressure and indicates that this transporter is important in the acute response of vascular smooth muscle to hypertension.

1990 ◽  
Vol 258 (6) ◽  
pp. C1025-C1030 ◽  
Author(s):  
K. Blackburn ◽  
R. F. Highsmith

Endothelin (ET)-induced contractions of vascular smooth muscle (VSM) are dependent on extracellular Ca2+ yet display only partial sensitivity to L-type Ca2+ antagonists. The purpose of this study was to evaluate the effect of nickel (Ni2+), a Ca2+ channel antagonist with clearly documented differential potency toward L- vs. T-type Ca2+ currents on ET-mediated contractions in VSM. Treatment of rings of left anterior descending porcine coronary artery (LAD) with Ni2+ produced a profound dose-dependent inhibition of isometric force development in response to porcine ET (ET-1). At a concentration of 360 microM, Ni2+ exerted a significant inhibitory effect on contracture in response to doses of ET-1 ranging from 3 to 100 nM. In contrast, the same concentration of Ni2+ failed to significantly affect peak force development in response to KCl depolarization (5-77 mM) or to phenylephrine (0.3-30 mM). In addition, 360 microM Ni2+ significantly inhibited the contractile response of rat aorta to 10 nM ET-1. We conclude that ET-1 activates a Ni2(+)-sensitive process in VSM which may signal an additional Ca2+ influx pathway that appears to be functionally distinct from the L-type Ca2+ channel.


2001 ◽  
Vol 281 (2) ◽  
pp. C579-C584 ◽  
Author(s):  
Fatma Akar ◽  
Gengru Jiang ◽  
Richard J. Paul ◽  
W. Charles O'Neill

Vasoconstrictors activate the Na+-K+-2Cl− cotransporter NKCC1 in rat aortic smooth muscle, but the mechanism is unknown. Efflux of86Rb+ from rat aorta in response to phenylephrine (PE) was measured in the absence and presence of bumetanide, a specific inhibitor of NKCC1. Removal of extracellular Ca2+ completely abolished the activation of NKCC1 by PE. This was not due to inhibition of Ca2+-dependent K+ channels since blocking these channels with Ba2+ in Ca2+-replete solution did not prevent activation of NKCC1 by PE. Stimulation of NKCC1 by PE was inhibited 70% by 75 μM ML-9, 97% by 2 μM wortmannin, and 70% by 2 mM 2,3-butanedione monoxime, each of which inhibited isometric force generation in aortic rings. Bumetanide-insensitive Rb+efflux, an indication of Ca2+-dependent K+channel activity, was reduced by ML-9 but not by the other inhibitors. Stretching of aortic rings on tubing to increase lumen diameter to 120% of normal almost completely blocked the stimulation of NKCC1 by PE without inhibiting the stimulation by hypertonic shrinkage. We conclude that activation of the Na+-K+-2Cl− cotransporter by PE is the direct result of smooth muscle contraction through Ca2+-dependent activation of myosin light chain kinase. This indicates that the Na+-K+-2Cl− cotransporter is regulated by the contractile state of vascular smooth muscle.


1999 ◽  
Vol 276 (6) ◽  
pp. C1383-C1390 ◽  
Author(s):  
Fatma Akar ◽  
Elizabeth Skinner ◽  
Janet D. Klein ◽  
Madhumita Jena ◽  
Richard J. Paul ◽  
...  

Little is known about the function and regulation of the Na+-K+-2Cl−cotransporter NKCC1 in vascular smooth muscle. The activity of NKCC1 was measured as the bumetanide-sensitive efflux of86Rb+from intact smooth muscle of the rat aorta. Hypertonic shrinkage (440 mosmol/kgH2O) rapidly doubled cotransporter activity, consistent with its volume-regulatory function. NKCC1 was also acutely activated by the vasoconstrictors ANG II (52%), phenylephrine (50%), endothelin (53%), and 30 mM KCl (54%). Both nitric oxide and nitroprusside inhibited basal NKCC1 activity (39 and 34%, respectively), and nitroprusside completely reversed the stimulation by phenylephrine. The phosphorylation of NKCC1 was increased by hypertonic shrinkage, phenylephrine, and KCl and was reduced by nitroprusside. The inhibition of NKCC1 significantly reduced the contraction of rat aorta induced by phenylephrine (63% at 10 nM, 26% at 30 nM) but not by KCl. We conclude that the Na+-K+-2Cl−cotransporter in vascular smooth muscle is reciprocally regulated by vasoconstrictors and nitrovasodilators and contributes to smooth muscle contraction, indicating that alterations in NKCC1 could influence vascular smooth muscle tone in vivo.


2007 ◽  
Vol 292 (5) ◽  
pp. H2100-H2105 ◽  
Author(s):  
Puneet Garg ◽  
Christopher F. Martin ◽  
Shawn C. Elms ◽  
Frank J. Gordon ◽  
Susan M. Wall ◽  
...  

Studies in rat aorta have shown that the Na-K-2Cl cotransporter NKCC1 is activated by vasoconstrictors and inhibited by nitrovasodilators, contributes to smooth muscle tone in vitro, and is upregulated in hypertension. To determine the role of NKCC1 in systemic vascular resistance and hypertension, blood pressure was measured in rats before and after inhibition of NKCC1 with bumetanide. Intravenous infusion of bumetanide sufficient to yield a free plasma concentration above the IC50 for NKCC1 produced an immediate drop in blood pressure of 5.2% ( P < 0.001). The reduction was not prevented when the renal arteries were clamped, indicating that it was not due to a renal effect of bumetanide. Bumetanide did not alter blood pressure in NKCC1-null mice, demonstrating that it was acting specifically through NKCC1. In third-order mesenteric arteries, bumetanide-inhibitable efflux of 86Rb was acutely stimulated 133% by phenylephrine, and bumetanide reduced the contractile response to phenylephrine, indicating that NKCC1 influences tone in resistance vessels. The hypotensive effect of bumetanide was proportionately greater in rats made hypertensive by a 7-day infusion of norepinephrine (12.7%, P < 0.001 vs. normotensive rats) but much less so when hypertension was produced by a fixed aortic coarctation (8.0%), again consistent with an effect of bumetanide on resistance vessels rather than other determinants of blood pressure. We conclude that NKCC1 influences blood pressure through effects on smooth muscle tone in resistance vessels and that this effect is augmented in hypertension.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1748
Author(s):  
Eda Demirel ◽  
Caroline Arnold ◽  
Jaspal Garg ◽  
Marius Andreas Jäger ◽  
Carsten Sticht ◽  
...  

The regulator of G-protein signaling 5 (RGS5) acts as an inhibitor of Gαq/11 and Gαi/o activity in vascular smooth muscle cells (VSMCs), which regulate arterial tone and blood pressure. While RGS5 has been described as a crucial determinant regulating the VSMC responses during various vascular remodeling processes, its regulatory features in resting VSMCs and its impact on their phenotype are still under debate and were subject of this study. While Rgs5 shows a variable expression in mouse arteries, neither global nor SMC-specific genetic ablation of Rgs5 affected the baseline blood pressure yet elevated the phosphorylation level of the MAP kinase ERK1/2. Comparable results were obtained with 3D cultured resting VSMCs. In contrast, overexpression of RGS5 in 2D-cultured proliferating VSMCs promoted their resting state as evidenced by microarray-based expression profiling and attenuated the activity of Akt- and MAP kinase-related signaling cascades. Moreover, RGS5 overexpression attenuated ERK1/2 phosphorylation, VSMC proliferation, and migration, which was mimicked by selectively inhibiting Gαi/o but not Gαq/11 activity. Collectively, the heterogeneous expression of Rgs5 suggests arterial blood vessel type-specific functions in mouse VSMCs. This comprises inhibition of acute agonist-induced Gαq/11/calcium release as well as the support of a resting VSMC phenotype with low ERK1/2 activity by suppressing the activity of Gαi/o.


2003 ◽  
Vol 99 (3) ◽  
pp. 666-677 ◽  
Author(s):  
Takashi Akata ◽  
Tomoo Kanna ◽  
Jun Yoshino ◽  
Shosuke Takahashi

Background Isoflurane has been shown to directly inhibit vascular reactivity. However, less information is available regarding its underlying mechanisms in systemic resistance arteries. Methods Endothelium-denuded smooth muscle strips were prepared from rat mesenteric resistance arteries. Isometric force and intracellular Ca2+ concentration ([Ca2+]i) were measured simultaneously in the fura-2-loaded strips, whereas only the force was measured in the beta-escin membrane-permeabilized strips. Results Isoflurane (3-5%) inhibited the increases in both [Ca2+]i and force induced by either norepinephrine (0.5 microM) or KCl (40 mM). These inhibitions were similarly observed after depletion of intracellular Ca2+ stores by ryanodine. Regardless of the presence of ryanodine, after washout of isoflurane, its inhibition of the norepinephrine response (both [Ca2+]i and force) was significantly prolonged, whereas that of the KCl response was quickly restored. In the ryanodine-treated strips, the norepinephrine- and KCl-induced increases in [Ca2+]i were both eliminated by nifedipine, a voltage-gated Ca2+ channel blocker, whereas only the former was inhibited by niflumic acid, a Ca2+-activated Cl- channel blocker. Isoflurane caused a rightward shift of the Ca2+-force relation only in the fura-2-loaded strips but not in the beta-escin-permeabilized strips. Conclusions In mesenteric resistance arteries, isoflurane depresses vascular smooth muscle reactivity by directly inhibiting both Ca2+ mobilization and myofilament Ca2+ sensitivity. Isoflurane inhibits both norepinephrine- and KCl-induced voltage-gated Ca2+ influx. During stimulation with norepinephrine, isoflurane may prevent activation of Ca2+-activated Cl- channels and thereby inhibit voltage-gated Ca2+ influx in a prolonged manner. The presence of the plasma membrane appears essential for its inhibition of the myofilament Ca2+ sensitivity.


Sign in / Sign up

Export Citation Format

Share Document