scholarly journals Angiotensin II increases GABAB receptor expression in nucleus tractus solitarii of rats

2008 ◽  
Vol 294 (6) ◽  
pp. H2712-H2720 ◽  
Author(s):  
Fanrong Yao ◽  
Colin Sumners ◽  
Stephen T. O'Rourke ◽  
Chengwen Sun

Increasing evidence indicates that both the angiotensin II (ANG II) and γ-aminobutyric acid (GABA) systems play a very important role in the regulation of blood pressure (BP). However, there is little information concerning the interactions between these two systems in the nucleus tractus solitarii (NTS). In the present study, we examined the effects of ANG II on GABAA and GABAB receptor (GAR and GBR) expression in the NTS of Sprague-Dawley rats. The direct effect of ANG II on GBR expression was determined in neurons cultured from NTS. Treatment of neuronal cultures with ANG II (100 nM, 5 h) induced a twofold increase in GBR1 expression, as detected with real-time RT-PCR and Western blots, but had no effect on GBR2 or GAR expression. In electrophysiological experiments, perfusion of neuronal cultures with the GBR agonist baclofen decreased neuronal firing rate by 39% and 63% in neurons treated with either PBS (control) or ANG II, respectively, indicating that chronic ANG II treatment significantly enhanced the neuronal response to GBR activation. In contrast, ANG II had no significant effect on the inhibitory action of the GAR agonist muscimol. In whole animal studies, intracerebroventricular infusion of ANG II induced a sustained increase in mean BP and an elevation of GBR1 mRNA and protein levels in the NTS. These results indicate that ANG II stimulates GBR expression in NTS neurons, and this could contribute to the central nervous system actions of ANG II that result in dampening of baroreflexes and elevated BP in the central actions of ANG II.

2009 ◽  
Vol 297 (5) ◽  
pp. H1837-H1844 ◽  
Author(s):  
Qi Zhang ◽  
Fanrong Yao ◽  
Stephen T. O'Rourke ◽  
Steven Y. Qian ◽  
Chengwen Sun

Angiotensin II (ANG II) increases GABAB receptor expression in neuronal cultures from the nucleus tractus solitarii (NTS). In the present study, the chronic effects of ANG II on GABAB receptor expression and activity were examined in the NTS of Sprague-Dawley rats. Intracerebroventricular infusion of ANG II caused a significant elevation in blood pressure (BP) and an increase in GABAB receptor expression in the NTS. Conversely, chronic NG-nitro-l-arginine methyl ester (l-NAME) treatment also increased BP, but had no effect on GABAB receptor expression in the NTS. Next, we examined the BP response to the GABAB receptor agonist baclofen microinjected into the NTS of ANG II- or artificial cerebrospinal fluid (aCSF)-infused rats. NTS microinjection of baclofen increased BP in both groups of rats. However, the pressor response to baclofen was enhanced in ANG II-infused rats compared with aCSF-infused rats. In addition, bilateral microinjection of the GABAB receptor antagonist CGP-35348 into the NTS evoked a decrease in BP in both group of rats, and the depressor responses to CGP-35348 were enhanced in the ANG II-infused rats. In contrast, the pressor responses to the GABAA receptor agonist muscimol and the depressor responses to the GABAA receptor antagonist bicuculline were comparable between aCSF- and ANG II-infused rats. These results indicate that chronic ANG II infusion stimulates GABAB receptor expression and augments GABAB receptor-mediated responses in the NTS. This effect could contribute to the central nervous system actions of ANG II that result in dampening of baroreflexes and elevation in arterial BP.


2001 ◽  
Vol 85 (5) ◽  
pp. 2177-2183 ◽  
Author(s):  
Mingyan Zhu ◽  
Colin Sumners ◽  
Craig H. Gelband ◽  
Philip Posner

Previously, we determined that angiotensin II (Ang II) elicits an Ang II type 2 (AT2) receptor–mediated increase of neuronal delayed rectifier K+( I KV) current in neuronal cultures from newborn rat hypothalamus and brain stem. This requires generation of lipoxygenase (LO) metabolites of arachidonic acid (AA) and activation of serine/threonine phosphatase type 2A (PP-2A). Enhancement of I KV results in a decrease in net inward current during the action potential (AP) upstroke as well as shortening of the refractory period, which may lead to alterations in neuronal firing rate. Thus, in the present study, we used whole-cell current clamp recording methods to investigate the AT2 receptor–mediated effects of Ang II on the firing rate of cultured neurons from the hypothalamus and brain stem. At room temperature, these neurons exhibited spontaneous APs with an amplitude of 77.72 ± 2.7 mV ( n = 20) and they fired at a frequency of 0.8 ± 0.1 Hz ( n = 11). Most cells had a prolonged early after-depolarization that followed an initial fully developed AP. Superfusion of Ang II (100 nM) plus losartan (LOS, 1 μM) to block Ang II type 1 receptors elicited a significant chronotropic effect that was reversed by the AT2 receptor inhibitor PD 123,319 (1 μM). LOS alone had no effect on any of the parameters measured. The chronotropic effect of Ang II was reversed by the general LO inhibitor 5,8,11,14-eicosatetraynoic acid (10 μM) or by the selective PP-2A inhibitor okadaic acid (1 nM) and was mimicked by the 12-LO metabolite of AA 12-(S)-hydroxy-(5Z, 8Z, 10E, 14Z)-eicosatetraynoic acid. These data indicate that Ang II elicits an AT2 receptor–mediated increase in neuronal firing rate, an effect that involves generation of LO metabolites of AA and activation of PP-2A.


1990 ◽  
Vol 258 (5) ◽  
pp. C849-C854 ◽  
Author(s):  
S. L. Linas ◽  
R. Marzec-Calvert ◽  
M. E. Ullian

Dietary K depletion (KD) results in increases in the number of angiotensin II (ANG II) receptors and prevents ANG II-induced downregulation of ANG II receptors in membrane preparations of vessels from KD animals. Because dietary KD results in changes in factors other than K, we K depleted vascular smooth muscle cells (VSMC) in culture to determine the specific effects of KD on ANG II receptor expression and processing. Scatchard analysis of ANG II uptake at 4 degrees C revealed that the number of surface receptors was increased by 37% in cells in which K had been reduced by 45%. This increase also occurred in the presence of cycloheximide. To determine the effect of KD on receptor processing, we measured the number of surface receptors after exposure to ANG II in concentrations sufficient to cause down-regulation. After 30-min exposure to ANG II, the number of surface receptors was reduced by 63% in control cells but only 33% in KD cells. Thirty minutes after withdrawing ANG II, surface binding returned to basal levels in control cells but was still reduced by 20% in KD cells. To determine the functional significance of impaired receptor processing, we measured ANG II uptake at 21 degrees C. Uptake at 21 degrees C depends on the functional number of receptors, i.e., the absolute number of surface receptors and the rate at which receptors are recycled to the surface after ANG II binding. ANG II uptake at 21 degrees C was reduced by 50% in KD cells.(ABSTRACT TRUNCATED AT 250 WORDS)


2017 ◽  
Vol 114 (2) ◽  
pp. 233-246 ◽  
Author(s):  
Jiao Lu ◽  
Hong-Wei Wang ◽  
Monir Ahmad ◽  
Marzieh Keshtkar-Jahromi ◽  
Mordecai P Blaustein ◽  
...  

AbstractAimsHigh salt intake markedly enhances hypertension induced by angiotensin II (Ang II). We explored central and peripheral slow-pressor mechanisms which may be activated by Ang II and salt.Methods and resultsIn protocol I, Wistar rats were infused subcutaneously with low-dose Ang II (150 ng/kg/min) and fed regular (0.4%) or high salt (2%) diet for 14 days. In protocol II, Ang II-high salt was combined with intracerebroventricular infusion of mineralocorticoid receptor (MR) blockers (eplerenone, spironolactone), epithelial sodium channel (ENaC) blocker (benzamil), angiotensin II type 1 receptor (AT1R) blocker (losartan) or vehicles. Ang II alone raised mean arterial pressure (MAP) ∼10 mmHg, but Ang II-high salt increased MAP ∼50 mmHg. Ang II-high salt elevated plasma corticosterone, aldosterone and endogenous ouabain but not Ang II alone. Both Ang II alone and Ang II-high salt increased mRNA and protein expression of CYP11B2 (aldosterone synthase gene) in the adrenal cortex but not of CYP11B1 (11-β-hydroxylase gene). In the aorta, Ang II-high salt increased sodium-calcium exchanger-1 (NCX1) protein. The Ang II-high salt induced increase in MAP was largely prevented by central infusion of MR blockers, benzamil or losartan. Central blockades significantly lowered plasma aldosterone and endogenous ouabain and markedly decreased Ang II-high salt induced CYP11B2 mRNA expression in the adrenal cortex and NCX1 protein in the aorta.ConclusionThese results suggest that in Ang II-high salt hypertension, MR-ENaC-AT1R signalling in the brain increases circulating aldosterone and endogenous ouabain, and arterial NCX1. These factors can amplify blood pressure responses to centrally-induced sympatho-excitation and thereby contribute to severe hypertension.


1989 ◽  
Vol 257 (3) ◽  
pp. C588-C595 ◽  
Author(s):  
E. M. Richards ◽  
K. Hermann ◽  
C. Sumners ◽  
M. K. Raizada ◽  
M. I. Phillips

The effects of adrenergic drugs on the release of immunoreactive angiotensin II (ANG II-ir) from brain cells in culture were examined. In neuronal cultures, basal release of Ang II-ir was 43.65 +/- 7.44 pg/5-min incubation period (n = 14 experiments; 52 individual determinations), and in astrocytic glial cultures, it was 21.76 +/- 5.7 pg (n = 8 experiments; 24 individual determinations) when cells were exposed to buffer alone. Incubation of neuronal cultures with the alpha 2-adrenergic antagonist yohimbine (0.1-50 microM, 5 min) caused concentration-dependent increases in ANG II-ir release above basal levels. Analysis of the released material by high-pressure liquid chromatography revealed that authentic ANG II was present. No increase in the release of ANG II-ir was seen from glial cells. Experiments using neuronal cultures revealed that the yohimbine-induced release of ANG II-ir may be secondary to increased norepinephrine (NE) release. Incubation of neuronal cultures with NE (10 nM-50 microM) caused concentration-dependent increases in the release of ANG II-ir. This effect of NE was not inhibited by the alpha 1-adrenergic blocker prazosin. However, a weaker release of ANG II-ir from neuronal cultures was stimulated by the beta-adrenergic agonist isoproterenol at 100 microM. These data show that ANG II-ir can be released from neuronal but not glial cell cultures by adrenergic receptor-mediated mechanisms.


1999 ◽  
Vol 277 (1) ◽  
pp. R162-R172 ◽  
Author(s):  
R. S. Weisinger ◽  
J. R. Blair-West ◽  
P. Burns ◽  
D. A. Denton

The influence of prolonged ingestion of ethanol on stimulation of water or ethanol intake by intracerebroventricular infusion of ANG II was evaluated in rats. Animals were maintained for 5–6 mo with either 10% ethanol solution or water as their only source of fluid. In both groups of rats, infusion of ANG II caused a large increase in water intake (7-fold) and a lesser increase in 10% ethanol intake (2-fold). The effect of ANG II on the volume of ethanol solution ingested, however, was inversely related to the concentration of the ethanol solution. As the concentration of ethanol solution was decreased, frequency and duration of drinking bouts increased. The intake of sweetened 10% ethanol solution or commercially produced wine during infusion of ANG II was similar to the intake of 10% ethanol and not related to taste preference. In conclusion, chronic consumption of ethanol solution did not appear to adversely effect ANG II stimulation of water intake. The intake of ethanol solution during infusion of ANG II was inhibited by a direct effect of ingested ethanol and/or by indirect effect from metabolized ethanol.


2007 ◽  
Vol 292 (5) ◽  
pp. R1893-R1899 ◽  
Author(s):  
S. G. Hood ◽  
T. Cochrane ◽  
M. J. McKinley ◽  
C. N. May

The mechanisms by which chronic infusion of an initially subpressor low dose of angiotensin II (ANG II) causes a progressive and sustained hypertension remain unclear. In conscious sheep ( n = 6), intravenous infusion of ANG II (2 μg/h) gradually increased mean arterial pressure (MAP) from 82 ± 3 to 96 ± 5 mmHg over 7 days ( P < 0.001). This was accompanied by peripheral vasoconstriction; total peripheral conductance decreased from 44.6 ± 6.4 to 38.2 ± 6.7 ml·min−1·mmHg−1 ( P < 0.001). Cardiac output and heart rate were unchanged. In the regional circulation, mesenteric, renal, and iliac conductances decreased but blood flows were unchanged. There was no coronary vasoconstriction, and coronary blood flow increased. Ganglion blockade (125 mg/h hexamethonium for 4 h) reduced MAP by 13 ± 1 mmHg in the control period and by 7 ± 2 mmHg on day 8 of ANG II treatment. Inhibition of central AT1 receptors by intracerebroventricular infusion of losartan (1 mg/h for 3 h) had no effect on MAP in the control period or after 7 days of ANG II infusion. Pressor responsiveness to incremental doses of intravenous ANG II (5, 10, 20 μg/h, each for 15 min) was unchanged after 7 days of ANG II infusion. ANG II caused no sodium or water retention. In summary, hypertension due to infusion of a low dose of ANG II was accompanied by generalized peripheral vasoconstriction. Indirect evidence suggested that the hypertension was not neurogenic, but measurement of sympathetic nerve activity is required to confirm this conclusion. There was no evidence for a role for central angiotensinergic mechanisms, increased pressor responsiveness to ANG II, or sodium and fluid retention.


1989 ◽  
Vol 257 (4) ◽  
pp. C706-C713 ◽  
Author(s):  
L. M. Myers ◽  
C. Sumners

Previous studies determined that direct activation of protein kinase C (PKC) with phorbol esters increases the number of angiotensin II (ANG II)-specific binding sites in neuronal cultures prepared from the hypothalamus and brain stem of 1-day-old rats. In the physiological situation, PKC is activated by diacylglycerol, which can be produced by multiple pathways, such as stimulation of inositol phospholipid (IP) hydrolysis, phosphatidylcholine hydrolysis, or by de novo synthesis. In the present study we have examined whether stimulation of IP hydrolysis, and presumably activation of PKC, can mimic the actions of phorbol esters on ANG II-specific binding. We have incubated neuronal cultures with agents that increase IP hydrolysis and have determined the effects on ANG II-specific binding. Incubation of neuronal cultures with norepinephrine (NE) at concentrations (greater than 5 microM) and for times (15-60 min) that cause large increases in IP hydrolysis caused increases in the number of ANG II-specific binding sites, mimicking the actions of phorbol esters. The return of IP hydrolysis to control values was associated with a return of ANG II-specific binding to control levels. The upregulatory action of NE was abolished by prazosin, demonstrating the involvement of alpha 1-adrenergic receptors. In addition, this effect was blunted by the PKC antagonist H 7, suggesting PKC involvement in the response. Thus we have determined a potential physiological mechanism by which stimulation of IP hydrolysis by NE, and possible subsequent activation of PKC, leads to upregulation of ANG II-specific binding sites in neuronal cultures.(ABSTRACT TRUNCATED AT 250 WORDS)


2000 ◽  
Vol 279 (6) ◽  
pp. F1092-F1100 ◽  
Author(s):  
Jörg Schwöbel ◽  
Tina Fischer ◽  
Bettina Lanz ◽  
Markus Mohaupt

Angiotensin II (ANG II) and nitric oxide (NO) have contrasting vascular effects, yet both sustain inflammatory responses. We investigated the impact of ANG II on lipopolysaccharide (LPS)/interferon-γ (IFN)-induced NO production in cultured rat mesangial cells (MCs). LPS/IFN-induced nitrite production, the inducible form of nitric oxide synthase (NOS-2) mRNA, and protein expression were dose dependently inhibited by ANG II on coincubation, which was abolished on ANG II type 2 (AT2) receptor blockade by PD-123319. Homology-based RT-PCR verified the presence of AT1A, AT1B, and AT2 receptors. To shift the AT receptor expression toward the type 1 receptor, two sets of experiments were performed: LPS/IFN preincubation for 24 h was followed by 8-h coincubation with ANG II; or during 24-h coincubation of LPS/IFN and ANG II, dexamethasone was added for the last 6-h period. Both led to an amplified overall expression of NOS-2 protein and NO production that was inhibitable by actinomycin D in the first setup. Induced NO production was enhanced via the AT1 receptor; however, it was diminished via the AT2 receptor. In conclusion, induced NO production is negatively controlled by the AT2, whereas AT1 receptor stimulation enhanced NO synthesis in MCs. The overall NO availability depended on the onset of the inflammatory stimuli with respect to ANG II exposure and the available AT receptors.


1997 ◽  
Vol 272 (4) ◽  
pp. R1055-R1059 ◽  
Author(s):  
M. Mathai ◽  
M. D. Evered ◽  
M. J. McKinley

We investigated the contribution of brain angiotensinergic mechanisms to postprandial drinking in sheep. Sheep in fluid balance were given 0.8 kg chaff for 30 min, and water intake was measured for the next hour. Intracerebroventricular infusion of the AT1 type angiotensin II (ANG II) receptor blocker losartan (1 mg/h) reduced postprandial drinking by approximately 70% (n = 7, P < 0.01) but did not affect food intake. The same losartan dose given intravenously had little or no effect on prandial drinking. Feeding increased Na+ concentrations in plasma and cerebrospinal fluid (CSF; n = 5, P < 0.05). Intracerebroventricular losartan (1 mg/h) inhibited the drinking responses to intracarotid infusion of ANG II (0.8 microg/min for 30 min, n = 4, P < 0.01) and to intracerebroventricular infusion of 0.5 M NaCl (1 ml/h for 1 h, n = 5, P < 0.05) but had no effect on drinking responses to intravenous infusion of 4 M NaCl (1.3 ml/min for 30 min). These findings indicate that a brain ANG II-dependent mechanism is involved in postprandial drinking in sheep. They suggest also that the mechanism by which increasing CSF Na+ causes thirst involves brain ANG II and is different from the mechanism subserving the drinking response to changes in blood Na+.


Sign in / Sign up

Export Citation Format

Share Document