Effect of hyperglycemia and fatty acid oxidation inhibition during aerobic conditions and demand-induced ischemia

2003 ◽  
Vol 284 (5) ◽  
pp. H1521-H1527 ◽  
Author(s):  
Pedro N. Chavez ◽  
William C. Stanley ◽  
Tracy A. McElfresh ◽  
Hazel Huang ◽  
Joseph P. Sterk ◽  
...  

Metabolic interventions improve performance during demand-induced ischemia by reducing myocardial lactate production and improving regional systolic function. We tested the hypotheses that 1) stimulation of glycolysis would increase lactate production and improve ventricular wall motion, and 2) the addition of fatty acid oxidation inhibition would reduce lactate production and further improve contractile function. Measurements were made in anesthetized open-chest swine hearts. Three groups, hyperglycemia (HG), HG + oxfenicine (HG + Oxf), and control (CTRL), were treated under aerobic conditions and during demand-induced ischemia. During demand-induced ischemia, HG resulted in greater lactate production and tissue lactate content but had no significant effect on glucose oxidation. HG + Oxf significantly lowered lactate production and increased glucose oxidation compared with both the CTRL and HG groups. Myocardial energy efficiency was greater in the HG and HG + Oxf groups under aerobic conditions but did not change during demand-induced ischemia. Thus enhanced glycolysis resulted in increased energy efficiency under aerobic conditions but significantly enhanced lactate production with no further improvement in function during demand-induced ischemia. Partial inhibition of free fatty acid oxidation in the presence of accelerated glycolysis increased energy efficiency under aerobic conditions and significantly reduced lactate production and enhanced glucose oxidation during demand-induced ischemia.

2005 ◽  
Vol 289 (6) ◽  
pp. H2304-H2309 ◽  
Author(s):  
William C. Stanley ◽  
Eric E. Morgan ◽  
Hazel Huang ◽  
Tracy A. McElfresh ◽  
Joseph P. Sterk ◽  
...  

The rate of cardiac fatty acid oxidation is regulated by the activity of carnitine palmitoyltransferase-I (CPT-I), which is inhibited by malonyl-CoA. We tested the hypothesis that the activity of the enzyme responsible for malonyl-CoA degradation, malonyl-CoA decarboxlyase (MCD), regulates myocardial malonyl-CoA content and the rate of fatty acid oxidation during demand-induced ischemia in vivo. The myocardial content of malonyl-CoA was increased in anesthetized pigs using a specific inhibitor of MCD (CBM-301106), which we hypothesized would result in inhibition of CPT-I, reduction in fatty acid oxidation, a reciprocal activation of glucose oxidation, and diminished lactate production during demand-induced ischemia. Under normal-flow conditions, treatment with the MCD inhibitor significantly reduced oxidation of exogenous fatty acids by 82%, shifted the relationship between arterial fatty acids and fatty acid oxidation downward, and increased glucose oxidation by 50%. Ischemia was induced by a 20% flow reduction and β-adrenergic stimulation, which resulted in myocardial lactate production. During ischemia MCD inhibition elevated malonyl-CoA content fourfold, reduced free fatty acid oxidation rate by 87%, and resulted in a 50% decrease in lactate production. Moreover, fatty acid oxidation during ischemia was inversely related to the tissue malonyl-CoA content ( r = −0.63). There were no differences between groups in myocardial ATP content, the activity of pyruvate dehydrogenase, or myocardial contractile function during ischemia. Thus modulation of MCD activity is an effective means of regulating myocardial fatty acid oxidation under normal and ischemic conditions and reducing lactate production during demand-induced ischemia.


2008 ◽  
Vol 295 (3) ◽  
pp. H939-H945 ◽  
Author(s):  
Lufang Zhou ◽  
Hazel Huang ◽  
Tracy A. McElfresh ◽  
Domenick A. Prosdocimo ◽  
William C. Stanley

The role of anaerobic glycolysis and oxidative substrate selection on contractile function and mechanical efficiency during moderate severity myocardial ischemia is unclear. We hypothesize that 1) preventing anaerobic glycolysis worsens contractile function and mechanical efficiency and 2) increasing glycolysis and glucose oxidation while inhibiting free fatty acid oxidation improves contractile function during ischemia. Experiments were performed in anesthetized pigs, with regional ischemia induced by a 60% decrease in left anterior descending coronary artery blood flow for 40 min. Three groups were studied: 1) no treatment, 2) inhibition of glycolysis with iodoacetate (IAA), or 3) hyperinsulinemia and hyperglycemia (HI + HG). Glucose and free fatty acid oxidation were measured using radioisotopes and anaerobic glycolysis from net lactate efflux and myocardial lactate content. Regional contractile power was assessed from left ventricular pressure and segment length in the anterior wall. We found that preventing anaerobic glycolysis with IAA during ischemia in the absence of alterations in free fatty acid and glucose oxidation did not adversely affect contractile function or mechanical efficiency during myocardial ischemia, suggesting that anaerobic glycolysis is not essential for maintaining residual contractile function. Increasing glycolysis and glucose oxidation with HI + HG inhibited free fatty acid oxidation and improved contractile function and mechanical efficiency. In conclusion, these results show a dissociation between myocardial function and anaerobic glycolysis during moderate severity ischemia in vivo, suggesting that metabolic therapies should not be aimed at inhibiting anaerobic glycolysis per se, but rather activating insulin signaling and/or enhancing carbohydrate oxidation and/or decreasing fatty acid oxidation.


1994 ◽  
Vol 267 (5) ◽  
pp. H1862-H1871 ◽  
Author(s):  
R. L. Collins-Nakai ◽  
D. Noseworthy ◽  
G. D. Lopaschuk

Although epinephrine is widely used clinically, its effect on myocardial energy substrate preference in the intact heart has yet to be clearly defined. We determined the effects of epinephrine on glucose and fatty acid metabolism in isolated working rat hearts perfused with 11 mM glucose, 0.4 mM palmitate, and 100 muU/ml insulin at an 11.5-mmHg left atrial preload and a 60-mmHg aortic afterload. Glycolysis and glucose oxidation were measured in hearts perfused with [5–3H]glucose and [U-14C]glucose, whereas fatty acid oxidation was measured in hearts perfused with [1–14C]palmitate. Addition of 1 microM epinephrine resulted in a 53% increase in the heart rate-developed pressure product. Glycolysis increased dramatically following addition of epinephrine (a 272% increase), as did glucose oxidation (a 410% increase). In contrast, fatty acid oxidation increased by only 10%. Epinephrine treatment did not increase the amount of oxygen required to produce an equivalent amount of ATP; however, epinephrine did increase the uncoupling between glycolysis and glucose oxidation in these fatty acid-perfused hearts, resulting in a significant increase in H+ production from glucose metabolism. Overall ATP production in epinephrine-treated hearts increased 59%. The contribution of glucose (glycolysis and glucose oxidation) to ATP production increased from 13 to 36%, which was accompanied by a reciprocal decrease in the contribution of fatty acid oxidation to ATP production from 83 to 63%. The increase in glucose oxidation was accompanied by a significant increase in pyruvate dehydrogenase complex activity in the active form. We conclude that the increase in ATP required for contractile function following epinephrine treatment occurs through a preferential increase in glucose use.


1993 ◽  
Vol 85 (5) ◽  
pp. 525-535 ◽  
Author(s):  
Luigi S. Brandi ◽  
Donatella Santoro ◽  
Andrea Natali ◽  
Fiorella Altomonte ◽  
Simona Baldi ◽  
...  

1. Stress is associated with a severe, yet reversible, form of insulin resistance. The aim of this study was to quantify the kinetics of insulin action (sensitivity and responsiveness) on intermediary metabolism during post-surgical stress. 2. We studied nine patients 6–8 h after major uncomplicated surgery, and eight healthy subjects matched for age, weight, glucose tolerance and duration of fast. A three-step isoglycaemic insulin clamp was combined with indirect calorimetry, [6-3H]glucose infusion and the forearm technique. 3. The following significant (P <0.05 or less) abnormalities were found in the patients. Hepatic glucose production was higher at baseline, and less suppressed by insulin. Whole-body glucose disposal was impaired at all insulin doses (by 33–60%). Glucose oxidation was depressed throughout the dose range but its increments in response to insulin were normal. In contrast, non-oxidative glucose disposal was essentially unresponsive. At all insulin levels, forearm glucose extraction was markedly depressed and forearm lactate release was in excess of concurrent glucose uptake, suggesting ongoing glycogenolysis despite insulin. Total lipolysis (plasma free fatty acid and glycerol levels) promptly responded to insulin but remained higher than in the control subjects throughout. In the forearm, even the highest insulin dose could not suppress net free fatty acid and glycerol release. Total lipid oxidation was increased throughout the insulin range, and calculated direct free fatty acid (as opposed to plasma free fatty acid) oxidation was virtually unaffected by insulin. Protein oxidation was slightly (35%) increased, but was suppressed normally in response to insulin. Energy expenditure was 20% higher at baseline, and tailed to rise with insulin. Arterial blood pH values were consistently (if slightly) lower, and net forearm proton release was higher, both at baseline and daring insulin infusion. 4. Post-surgical unsulin resistance is characterized by normal sensitivity but decreased responsiveness of glucose oxidation, lipolysis and plasma free fatty acid oxidation, whereas glycogen synthesis and direct free fatty acid oxidation are virtually unresponsive. For both glucose and lipid metabolism, the insulin resistance is particularly severe in forearm tissues, in which mild metabolic acidosis may play an additional role.


1973 ◽  
Vol 58 (2) ◽  
pp. 332-339 ◽  
Author(s):  
Miriam D. Rosenthal ◽  
Joseph B. Warshaw

Chick embryo heart cells in tissue culture actively oxidize [1-14C]palmitate to 14CO2. Fatty acid oxidation by cell monolayers was linear with time and increasing protein concentration. The addition of carnitine to the assay medium resulted in a 30–70% increase in the rate of fatty acid oxidation. The specific activity of palmitic acid oxidation did not change significantly with time in culture and was also the same in rapidly proliferating and density-inhibited cell cultures. Addition of unlabeled glucose to the assay medium resulted in a 50% decrease in 14CO2 production from [1-14C]palmitate. Conversely, palmitate had a similar sparing effect on [14C]glucose oxidation to 14CO2. Lactate production accounted for most of the glucose depleted from the medium and was not inhibited by the presence of palmitate in the assay. Thus, the sparing action of the fatty acids on glucose oxidation appears to be at the mitochondrial level. The results indicate that although chick heart cells in culture are primarily anaerobic, they can oxidize fatty acid actively.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Zhenling Liu ◽  
Yina Ma ◽  
Michelle Kuznicki ◽  
Xingchi Chen ◽  
Wanqing Sun ◽  
...  

Introduction: Trimetazidine (TMZ) is an anti-anginal drug that has been widely used in Europe and Asia. The TMZ can optimize energy metabolism via inhibition of long-chain 3-ketoacyl CoA thiolase (3-KAT) in the heart, with subsequent decrease in fatty acid oxidation and stimulation of glucose oxidation. However, the mechanism by which TMZ aids in cardioprotection against ischemic injury has not been characterized. Hypothesis: AMP-activated protein kinase (AMPK) is an energy sensor that control ATP supply from substrate metabolism and protect heart from energy stress. TMZ changes the cardiac AMP/ATP ratio via modulating fatty acid oxidation, thereby it may trigger AMPK signaling cascade that contribute to protection heart from ischemia/reperfusion (I/R) injury. Methods: The mouse in vivo regional ischemia and reperfusion by the ligation of the left anterior descending coronary artery (LAD) were used for determination of myocardial infarction. The infarct size was compared between C57BL/6J WT mice and AMPK kinase dead (KD) transgenic mice with or without TMZ treatment. The ex vivo working heart perfusion system was used to monitor the effect of TMZ on glucose oxidation and fatty acid oxidation in the heart. Results: TMZ treatment significantly stimulates cardiac AMPK and extracellular signal-regulated kinase (ERK) signaling pathways (p<0.05 vs. vehicle group). The administration of TMZ reduces myocardial infarction size in WT C57BL/6J hearts, the reduction of myocardial infarction size by TMZ in AMPK KD hearts was significantly impaired versus WT hearts (p<0.05). Intriguingly, the administration of ERK inhibitor, PD 98059, to AMPK KD mice abolished the cardioprotection of TMZ against I/R injury. The ex vivo working heart perfusion data demonstrated that TMZ treatment significantly activates AMPK signaling and modulating the substrate metabolism by shifting fatty acid oxidation to glucose oxidation during reperfusion, leading to reduction of oxidative stress in the I/R hearts. Conclusions: Both AMPK and ERK signaling pathways mediate the cardioprotection of TMZ against ischemic injury. The metabolic benefits of TMZ for angina patients could be due to the activation of energy sensor AMPK in the heart by TMZ administration.


Sign in / Sign up

Export Citation Format

Share Document