scholarly journals Characterization of human cardiac mitochondrial ATP-sensitive potassium channel and its regulation by phorbol ester in vitro

2006 ◽  
Vol 290 (5) ◽  
pp. H1770-H1776 ◽  
Author(s):  
Ming Tao Jiang ◽  
Marko Ljubkovic ◽  
Yuri Nakae ◽  
Yang Shi ◽  
Wai-Meng Kwok ◽  
...  

Activation of the mitochondrial ATP-sensitive K+ channel (mitoKATP) and its regulation by PKC are critical events in preconditioning induced by ischemia or pharmaceutical agents in animals and humans. The properties of the human cardiac mitoKATP channel are unknown. Furthermore, there is no evidence that cytosolic PKC can directly regulate the mitoKATP channel located in the inner mitochondrial membrane (IMM) due to the physical barrier of the outer mitochondrial membrane. In the present study, we characterized the human cardiac mitoKATP channel and its potential regulation by PKC associated with the IMM. IMM fractions isolated from human left ventricles were fused into lipid bilayers in symmetrical potassium glutamate (150 mM). The conductance of native mitoKATP channels was usually below 80 pS (∼70%), which was reduced by ATP and 5-hydroxydecanoic acid (5-HD) in a dose- and time-dependent manner. The native mitoKATP channel is activated by diazoxide and inhibited by ATP and 5-HD. The PKC activator phorbol 12-myristate 13-acetate (2 μM) increased the cumulative open probability of the mitoKATP channel previously inhibited by ATP ( P < 0.05), but its inactive analog 4α-phorbol 12,13-didecanoate had no effect. Western blot analysis detected an inward rectifying K+ channel (Kir6.2) immunoreactive protein at 56 kDa and PKC-δ in the IMM. These data provide the first characterization of the human cardiac mitoKATP channel and its regulation by PKC(s) in IMM. This local PKC control mechanism may represent an alternative pathway to that proposed previously for cytosolic PKC during ischemic/pharmacological preconditioning.

2013 ◽  
Vol 304 (11) ◽  
pp. H1415-H1427 ◽  
Author(s):  
Piotr Bednarczyk ◽  
Agnieszka Koziel ◽  
Wieslawa Jarmuszkiewicz ◽  
Adam Szewczyk

In the present study, we describe the existence of a large-conductance Ca2+-activated potassium (BKCa) channel in the mitochondria of the human endothelial cell line EA.hy926. A single-channel current was recorded from endothelial mitoplasts (i.e., inner mitochondrial membrane) using the patch-clamp technique in the mitoplast-attached mode. A potassium-selective current was recorded with a mean conductance equal to 270 ± 10 pS in a symmetrical 150/150 mM KCl isotonic solution. The channel activity, which was determined as the open probability, increased with the addition of calcium ions and the potassium channel opener NS1619. Conversely, the activity of the channel was irreversibly blocked by paxilline and iberiotoxin, BKCa channel inhibitors. The open-state probability was found to be voltage dependent. The substances known to modulate BKCa channel activity influenced the bioenergetics of mitochondria isolated from human endothelial EA.hy926 cells. In isolated mitochondria, 100 μM Ca2+, 10 μM NS1619, and 0.5 μM NS11021 depolarized the mitochondrial membrane potential and stimulated nonphosphorylating respiration. These effects were blocked by iberiotoxin and paxilline in a potassium-dependent manner. Under phosphorylating conditions, NS1619-induced, iberiotoxin-sensitive uncoupling diverted energy from ATP synthesis during the phosphorylating respiration of the endothelial mitochondria. Immunological analysis with antibodies raised against proteins of the plasma membrane BKCa channel identified a pore-forming α-subunit and an auxiliary β2-subunit of the channel in the endothelial mitochondrial inner membrane. In conclusion, we show for the first time that the inner mitochondrial membrane in human endothelial EA.hy926 cells contains a large-conductance calcium-dependent potassium channel with properties similar to those of the surface membrane BKCa channel.


2001 ◽  
Vol 280 (2) ◽  
pp. C248-C253 ◽  
Author(s):  
Stephen C. Dahl ◽  
Joseph S. Handler ◽  
H. Moo Kwon

The accumulation of compatible osmolytes during osmotic stress is observed in virtually all organisms. In mammals, the hypertonicity-induced expression of osmolyte transporters and synthetic enzymes is conferred by the presence of upstream tonicity-responsive enhancer (TonE) sequences. Recently, we described the cloning and initial characterization of TonE-binding protein (TonEBP), a transcription factor that translocates to the nucleus and associates with TonE sequences in a tonicity-dependent manner. We now report that hypertonicity induces an increase in TonEBP phosphorylation that temporally correlates with increased nuclear localization of the molecule. TonEBP phosphorylation is not affected by a number of kinase inhibitors, including the p38 inhibitor SB-203580. In addition, in vitro binding assays show that the association of TonEBP with TonE sequences is not affected by phosphorylation. Thus TonEBP phosphorylation is an early step in the response of cells to hypertonicity and may be required for nuclear import or retention.


2018 ◽  
Vol 50 (5) ◽  
pp. 1840-1855 ◽  
Author(s):  
Michela Carraro ◽  
Vanessa Checchetto ◽  
Geppo Sartori ◽  
Roza Kucharczyk ◽  
Jean-Paul di Rago ◽  
...  

Background/Aims: The permeability transition pore (PTP) is an unselective, Ca2+-dependent high conductance channel of the inner mitochondrial membrane whose molecular identity has long remained a mystery. The most recent hypothesis is that pore formation involves the F-ATP synthase, which consistently generates Ca2+-activated channels. Available structures do not display obvious features that can accommodate a channel; thus, how the pore can form and whether its activity can be entirely assigned to F-ATP synthase is the matter of debate. In this study, we investigated the role of F-ATP synthase subunits e, g and b in PTP formation. Methods: Yeast null mutants for e, g and the first transmembrane (TM) α-helix of subunit b were generated and evaluated for mitochondrial morphology (electron microscopy), membrane potential (Rhodamine123 fluorescence) and respiration (Clark electrode). Homoplasmic C23S mutant of subunit a was generated by in vitro mutagenesis followed by biolistic transformation. F-ATP synthase assembly was evaluated by BN-PAGE analysis. Cu2+ treatment was used to induce the formation of F-ATP synthase dimers in the absence of e and g subunits. The electrophysiological properties of F-ATP synthase were assessed in planar lipid bilayers. Results: Null mutants for the subunits e and g display dimer formation upon Cu2+ treatment and show PTP-dependent mitochondrial Ca2+ release but not swelling. Cu2+ treatment causes formation of disulfide bridges between Cys23 of subunits a that stabilize dimers in absence of e and g subunits and favors the open state of wild-type F-ATP synthase channels. Absence of e and g subunits decreases conductance of the F-ATP synthase channel about tenfold. Ablation of the first TM of subunit b, which creates a distinct lateral domain with e and g, further affected channel activity. Conclusion: F-ATP synthase e, g and b subunits create a domain within the membrane that is critical for the generation of the high-conductance channel, thus is a prime candidate for PTP formation. Subunits e and g are only present in eukaryotes and may have evolved to confer this novel function to F-ATP synthase.


1990 ◽  
Vol 5 (2) ◽  
pp. 159-166 ◽  
Author(s):  
N. G. N. Milton ◽  
E. W. Hillhouse ◽  
S. A. Nicholson ◽  
C. H. Self ◽  
A. M. McGregor

ABSTRACT Murine monoclonal antibodies against human/rat corticotrophin-releasing factor-41 (CRF-41) were produced and characterized for use in the immunological and biological characterization of CRF-41. Spleen cells from BALB/c mice immunized with CRF-41 conjugated to bovine γ-globulin were fused with a BALB/c-derived non-secretor X-63 myeloma line. Hybridomas were selected for CRF antibody production by enzyme-linked immunosorbent assay, and positive hybridomas cloned twice. Three monoclonal antibodies were obtained (KCHMB001, KCHMB002 and KCHMB003) and characterized as IgG1, IgG1 and IgG2a isotypes respectively, with affinity constants for rat CRF-41 of 30, 53 and 34 nmol/l respectively. All three monoclonal antibodies recognize an epitope contained between residues 34 and 41 of the human/rat sequence. The antibodies were able to neutralize the ACTH-releasing activity of rat CRF-41, applied to rat pituitary fragments in vitro, in a dose-dependent manner. Isoelectric focusing showed that KCHMB 003 detected bands of synthetic rat CRF-41 and rat [Met(O)21,38]-CRF-41 at pH 7·1 and 6·8 respectively. Use of KCHMB003 in a two-site enzyme-amplified immunoassay showed that this antibody recognizes both synthetic rat CRF-41 and immunoreactive CRF-41 in rat hypothalamic tissue extracts.


1988 ◽  
Vol 90 (4) ◽  
pp. 707-716
Author(s):  
J.R. Nilsson

A study was made of the effects of cisplatin, cis-dichlorodiammineplatinum(II) (5–250 mg l-1), on the physiology and fine structure of Tetrahymena. The physiological effects observed were dose-dependent. Endocytosis was inhibited reversibly in all, but late in the high, concentrations. After an initial dose-related increase, due to division of cells most advanced in the cell cycle, proliferation ceased for at least two normal cell generations (6 h) in 50 and 100 mg drug l-1, but for 24 h in 250 mg l-1, after which multiplication was resumed in a dose-dependent manner. Exposure to cisplatin resulted in the appearance of small, refractive granules and platinum (i.e. electron-dense material) accumulated in these granules. Fine structural observations of cells exposed to 250 mg drug l-1 showed nucleolar fusion and appearance initially of lipid droplets, dense granules and autophagosomes. A time-dependent redistribution of cell organelles was revealed by morphometry; in particular, the mitochondria increased in number, but decreased in size. Moreover, after prolonged treatment (24 h) and without cell division, the inner mitochondrial membrane had diminished and the ratio of the inner to the outer mitochondrial membrane was only half of the value for control mitochondria. Concomitantly with this decrease, the cell content of ATP was reduced to a similar extent. The findings indicate a specific action of cisplatin on mitochondria, resembling that induced in Tetrahymena by chloramphenicol and methotrexate.


Zygote ◽  
2019 ◽  
Vol 27 (4) ◽  
pp. 203-213 ◽  
Author(s):  
Anima Tripathi ◽  
Vivek Pandey ◽  
A.N. Sahu ◽  
Alok K. Singh ◽  
Pawan K. Dubey

SummaryThe present study investigated if the presence of encircling granulosa cells protected against di(2-ethylhexyl)phthalate (DEHP)-induced oxidative stress in rat oocytes cultured in vitro. Denuded oocytes and cumulus–oocyte complexes (COCs) were treated with or without various doses of DEHP (0.0, 25.0, 50.0, 100, 200, 400 and 800 μM) in vitro. Morphological apoptotic changes, levels of oxidative stress and reactive oxygen species (ROS), mitochondrial membrane potential, and expression levels of apoptotic markers (Bcl2, Bax, cytochrome c) were analyzed. Our results showed that DEHP induced morphological apoptotic changes in a dose-dependent manner in denuded oocytes cultured in vitro. The effective dose of DEHP (400 µg) significantly (P>0.05) increased oxidative stress by elevating ROS levels and the mitochondrial membrane potential with higher mRNA expression and protein levels of apoptotic markers (Bax, cytochrome c). Encircling granulosa cells protected oocytes from DEHP-induced morphological changes, increased oxidative stress and ROS levels, as well as increased expression of apoptotic markers. Taken together our data suggested that encircling granulosa cells protected oocytes against DEHP-induced apoptosis and that the presence of granulosa cells could act positively towards the survival of oocytes under in vitro culture conditions and may be helpful during assisted reproductive technique programmes.


2008 ◽  
Vol 28 (4) ◽  
pp. 195-203 ◽  
Author(s):  
Mechthild M. Schroeter ◽  
Brent Beall ◽  
Hans W. Heid ◽  
Joseph M. Chalovich

An analysis of the primary structure of the actin-binding protein fesselin revealed it to be the avian homologue of mammalian synaptopodin 2 [Schroeter, Beall, Heid, and Chalovich (2008) Biochem. Biophys. Res. Commun. 371, 582–586]. We isolated two synaptopodin 2 isoforms from rabbit stomach that corresponded to known types of human synaptopodin 2. The purification scheme used was that developed for avian fesselin. These synaptopodin 2 forms shared several key functions with fesselin. Both avian fesselin and mammalian synaptopodin 2 bound to Ca2+–calmodulin, α-actinin and smooth-muscle myosin. In addition, both proteins stimulated the polymerization of actin in a Ca2+–calmodulin-dependent manner. Synaptopodin 2 has never before been shown to polymerize actin in the absence of α-actinin, to polymerize actin in a Ca2+–calmodulin-dependent manner, or to bind to Ca2+–calmodulin or myosin. These properties are consistent with the proposed function of synaptopodin 2 in organizing the cytoskeleton.


2002 ◽  
Vol 11 (8) ◽  
pp. 787-797 ◽  
Author(s):  
Ryo Suzuki ◽  
Yasuo Yoshioka ◽  
Etsuko Kitano ◽  
Tatsunobu Yoshioka ◽  
Hiroaki Oka ◽  
...  

Cell therapy is expected to relieve the shortage of donors needed for organ transplantation. When patients are treated with allogeneic or xenogeneic cells, it is necessary to develop a means by which to isolate administered cells from an immune attack by the host. We have developed “cytomedicine, ” which consists of functional cells entrapped in semipermeable polymer, and previously reported that alginate-poly-l-lysine-alginate microcapsules and agarose microbeads could protect the entrapped cells from injury by cellular immunity. However, their ability to isolate from humoral immunity was insufficient. It is well known that the complement system plays an essential role in rejection of transplanted cells by host humoral immunity. Therefore, the goal of the present study was to develop a novel cytomedical device containing a polymer capable of inactivating complement. In the screening of various polymers, polyvinyl sulfate (PVS) exhibited high anticomplement activity and low cytotoxicity. Murine pancreatic β-cell line (MIN6 cell) entrapped in agarose microbeads containing PVS maintained viability and physiological insulin secretion, replying in response to glucose concentration, and resisted rabbit antisera in vitro. PVS inhibited hemolysis of sensitized sheep erythrocytes (EAs) and rabbit erythrocytes by the complement system. This result suggests that PVS inhibits both the classical and alternative complement pathways of the complement system. Next, the manner in which PVS exerts its effects on complement components was examined. PVS was found to inhibit generation of C4a and Ba generation in activation of the classical and alternative pathways, respectively. Moreover, when the EAC1 cells, which were carrying C1 on the EAs, treated with PVS were exposed to C1-deficient serum, hemolysis decreased in a PVS dose-dependent manner. These results suggest that PVS inhibits C1 in the classical pathway and C3 convertase formation in the alternative pathway. Therefore, PVS may be a useful polymer for developing an anticomplement device for cytomedical therapy.


1991 ◽  
Vol 260 (6) ◽  
pp. H1779-H1789 ◽  
Author(s):  
L. Toro ◽  
L. Vaca ◽  
E. Stefani

This work is the initial characterization of Ca(2+)-activated K+ (KCa) channels from coronary smooth muscle reconstituted into lipid bilayers. The channels were obtained from a surface membrane preparation of porcine coronary smooth muscle. KCa channels were the predominant K+ channels in this preparation. The conductance histogram (n = 137 channels) revealed two main populations of “maxi” KCa channels with conductances of 245 and 295 pS. Each population could be subdivided in two “isoforms” or “isochannels” with different functional properties (voltage and Ca2+ sensitivities and kinetics). The analysis of “burst” probability of opening showed that at pCa 4 the two isochannels of 245 pS (KCa-1 and KCa-1') had half-activation potentials (V1/2) of -80 and 6 mV, respectively. The isochannels of 295 pS (KCa-2 and KCa-2') had V1/2 of -28 and -66 mV, respectively. KCa-1 had the highest Ca2+ sensitivity; at -60 mV, the concentration of half-activation value for Ca2+ was 1.2 +/- 0.3 microM (n = 5). External tetraethylammonium reduced channel amplitude in a voltage-dependent manner; dissociation constant was 180 +/- 6 and 466 +/- 41 microM at -40 and +80 mV, respectively (n = 5). Charybdotoxin (5-50 nM) produced typical long closings. These effects were similar in all the channels. We conclude that coronary smooth muscle possesses isoforms of maxi KCa channels with Ca2+ and voltage sensors with different properties, which may confer to each channel a specific functional role.


1999 ◽  
Vol 19 (9) ◽  
pp. 6253-6259 ◽  
Author(s):  
Audra E. Yermovsky-Kammerer ◽  
Stephen L. Hajduk

ABSTRACT All of the mitochondrial tRNAs of Trypanosoma bruceihave been shown to be encoded in the nucleus and must be imported into the mitochondrion. The import of nuclearly encoded tRNAs into the mitochondrion has been demonstrated in a variety of organisms and is essential for proper function in the mitochondrion. An in vitro import assay has been developed to study the pathway of tRNA import inT. brucei. The in vitro system utilizes crude isolated trypanosome mitochondria and synthetic RNAs transcribed from a cloned nucleus-encoded tRNA gene cluster. The substrate, composed of tRNASer and tRNALeu, is transcribed in tandem with a 59-nucleotide intergenic region. The tandem tRNA substrate is imported rapidly, while the mature-size tRNALeu fails to be imported in this system. These results suggest that the preferred substrate for tRNA import into trypanosome mitochondria is a precursor molecule composed of tandemly linked tRNAs. Import of the tandem tRNA substrate requires (i) a protein component that is associated with the surface of the mitochondrion, (ii) ATP pools both outside and within the mitochondrion, and (iii) a membrane potential. Dissipation of the proton gradient across the inner mitochondrial membrane by treatment with an uncoupling agent inhibits import of the tandem tRNA substrate. Characterization of the import requirements indicates that mitochondrial RNA import proceeds by a pathway including a protein component associated with the outer mitochondrial membrane, ATP-dependent steps, and a mitochondrial membrane potential.


Sign in / Sign up

Export Citation Format

Share Document